1duasnue Joyiny vd-HIN 1duasnue Joyiny vd-HIN

1duasnue Joyiny vd-HIN

"% NIH Public Access

O
H%

Author Manuscript

Published in final edited form as:
Hum Brain Mapp. 2009 May ; 30(5): 1548-1567. doi:10.1002/hbm.20628.

Estimating cerebral oxygen metabolism from fMRI with a dynamic
multi-compartment windkessel model

Theodore J. Huppertliz, Monica S. AIIen3, Solomon G. Diamond2’4, and David A. Boas?:®
1 Assistant Professor of Radiology. University of Pittsburgh, Pittsburgh PA 15213, USA

2 Athinoula A. Martinos Center for Biomedical |maging Massachusetts General Hospital, Charlestown, MA
02129, USA

3 Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA

4 Assistant Professor of Engineering. Thayer School of Engineering, Dartmouth College, Hanover, NH 03755,
USA

5 Associate Professor of Radiology, HMS, MGH and Member of the Affiliated Faculty Member intheHarvard-
MIT Division of Health Sciences and Technology

Abstract

Stimulus evoked changes in cerebral blood flow, volume, and oxygenation arise from vascular
responses to underlying neuronally mediated changes in vascular tone and cerebral oxygen
metabolism. There is increasing evidence that the magnitude and temporal characteristics of these
evoked hemodynamic changes are additionally influenced by the local properties of the vasculature
including the levels of baseline cerebral blood flow, volume, and blood oxygenation. In this work,
we utilize a physiologically motivated vascular model to describe the temporal characteristics of
evoked hemodynamic responses and their expected relationships to the structural and biomechanical
properties of the underlying vasculature. We use this model in a temporal curve-fitting analysis of
the high-temporal resolution functional MRI data to estimate the underlying cerebral vascular and
metabolic responses in the brain. We present evidence for the feasibility of our model-based analysis
to estimate transient changes in the cerebral metabolic rate of oxygen (CMRO,) in the human motor
cortex from combined pulsed arterial spin labeling (ASL) and blood oxygen level dependent (BOLD)
MRI. We examine both the numerical characteristics of this model and present experimental evidence
to support this model by examining concurrently measured ASL, BOLD, and near-infrared
spectroscopy to validate the calculated changes in underlying CMRO,.
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Introduction

Functional neuroimaging techniques, such as magnetic resonance imaging (MRI) (Belliveau
et al 1991; Ogawa et al 1990) can record changes in cerebral blood flow, volume, or oxygen
saturation that are indirectly related to neuronal activity and reflect the consequences of both
neural-metabolic and neural-vascular coupling. While the ability to image these signals has

Correspondence should be addressed to Theodore Huppert, PhD, Assistant Professor of Radiology, University of Pittsburgh, UPMC
Presbyterian, 200 Lothrop Street, Pittsburgh, PA 15213, E-mail: E-mail: huppertt@upmc.edu.



1duosnuey Joyiny vd-HIN 1duosnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Huppert et al.

Page 2

been invaluable in developing spatial maps of the functional organization of the brain, the
dependence of measured hemodynamic signals on both vascular and metabolic function results
in ambiguous and potentially non-linear relationships with the underlying electrophysiological
and metabolic responses. The potential use of cerebral oxygen metabolism (CMRO,) as a more
accurate indicator of neuronal activation has motivated the recent development of model-based
methods to extract these estimates from functional MRI (fMRI) or optical measurements
(reviewed by (Buxton et al. 2004)).

The majority of studies that have been performed to estimate CMRO, by fMRI methods have
focused on examining the magnitude of evoked signals. In many cases, these studies have used
long duration functional stimulation and steady-state approximations of the vascular and
oxygen transport models. In addition, many of these studies rely on a hypercapnic calibration
of the blood oxygen level dependent (BOLD) signal, as introduced by Davis et al (Davis et al.
1998), to calibrate the magnitude of signal changes; as these depend on the baseline
physiological and biophysical properties of the vasculature. However, such studies have largely
overlooked the potential to utilize the temporal dynamics of the hemodynamic measurements
and the inter-relationships between the flow, volume, and oxygen-saturation changes, which
can reveal information about the underlying biomechanical properties of the vasculature, such
as vascular transit time, vascular compliance, and baseline vascular features. Several recent
experimental studies have demonstrated that baseline blood flow, volume, and venous oxygen
saturation can have significant effects on the relative temporal characteristics of the overall
hemodynamic changes (e.g. (Cohen et al 2002; Liu et al 2004; Sicard and Duong 2005)). In
light of such experimental data, we hypothesized that the utilization of dynamic information
from multimodal measurements will help to characterize flow and oxygen metabolism changes
more accurately by providing additional information about the properties of the vascular
network based on the relationships of both the temporal evolution and magnitude of the evoked
hemodynamic signals.

Several recent studies have described bottom-up methodologies that use model-based curve-
fitting of the hemodynamic response to estimate the underlying vascular and metabolic states
(Deneux and Faugeras 2006; Huppert et al 2007; Riera et al 2005). In this work, we extend
our previous model described in (Huppert et al. 2007) to use high-temporal resolution,
multimodal measurements to estimate parameters depicting the vascular biomechanics. We
find that this approach allows us to estimate dynamic changes in CMRO, from measurements
of blood flow and BOLD evoked changes by using our vascular model as the basis for a non-
linear inverse problem. We present three examples to demonstrate the advantages and
limitations of the inverse problem by examining i) the local sensitivity and stability of the
inverse problem, ii) the global robustness of the parameter identification procedure, and iii)
the application of our model to experimental data. In the experimental data, we estimate relative
CMRO, changes from blood flow and BOLD responses measured during the performance of
a brief motor task activity as measured by pulsed ASL imaging. Finally, we compare the results
of this analysis of fMRI signals with the analysis of measured changes in blood flow, volume,
and oxygen saturation obtained using simultaneously measured fMRI and near-infrared
spectroscopy (NIRS) data.

2. Methods

2.1 Overview of Model

In our dynamic model, evoked changes in the vascular tone and the cerebral metabolic rate of
oxygen (CMRO,) are estimated by the inversion of a non-linear model that describes the
changes in blood flow, volume, and oxygenation in response to the driving forces as
schematically depicted in Fig. 1A. Our approach is similar to that discussed in (Deneux and
Faugeras 2006;Huppert et al 2007;Riera et al 2005). Our model can be divided into three
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components: i) a dynamic forward model that describes the physiological response of the
vascular system to flow and CMRO, changes (Section 2.1.1 and 2.1.2); ii) the observation
model that describes the biophysics of the fMRI or optical measurement process (Section
2.1.3); and iii) the inverse model that estimates values of the input states and parameters via a
measurement variance weighted least-squares fit of experimental data (Section 2.1.4). The
details of this forward model have been presented previously in (Huppert 2007;Huppert et al.
2007).

2.1.1. Vascular Forward Model—The vascular component of this model is derived from
basic principles of fluid mechanics and is based on the flow and volume changes within a
system consisting of a dilating arteriole, two compliant vascular windkessel compartments and
a constant volume compartment that models the pial veins as depicted in Fig. 1B and is
summarized in Table 1. Briefly, the blood flow between each vascular compartment (F_1 )
is derived from the gradient of the hydrostatic pressure (Pp) between the compartments and
the vascular resistance of the blood vessels (Ry,). The vascular resistance is inversely related
to the diameter of the blood vessels according to Poiseuille's law (Washburn 1921) and thereby
related to vascular volumes. A decrease in arterial resistance drives an increase in blood flow.
The resulting hydrostatic pressure between the vascular compartment and the surrounding
tissue (Pgurround) causes an increase in the vascular blood volume (V,)). As the capillary and
venous vascular compartments expand against the surrounding tissue, the extra-vascular space
resists compression which gives rise to a saturation of the volume expansion function. Thus,
the vascular capacitance (Cp,) decreases as a function of the pressure gradient between the
compartment and the surrounding tissue (Mandeville et al. 1999). In the aforementioned
variables, n indicates the vascular compartment (arterial, capillary, vein or pial vein).

In our model, we assume that the changes in vascular resistance can be approximated using a
canonical driving function to the vascular system similar to the canonical neurovascular model
described in (Buxton et al.). We define the dilation and contraction of the arteries as the sum
of a pair of independent canonical gamma-variant temporal basis functions with variable timing
parameters (refer Table 1: Arterial Dilation). We use these non-linear canonical functions with
variable onset time (zgnser), Width (o), and amplitude, to impose a smooth temporal basis for
the arterial resistance state instead of modeling the entire time-series of arterial dilation. A total
of six unknown model parameters describe the arterial dilation and contraction states (refer
Tables 1 and 3).

2.1.2. Oxygen Transport Forward Model—In the second part of the physiological
forward model, net changes in blood oxygenation are modeled by a set of first-order differential
equations that describe the balance between the oxygen supplied by the vascular response and
the oxygen consumed within the tissue. We calculate the oxygen content (c,0O5; designating
the nth compartment) in both the vascular segments and the bulk extra-vascular parenchyma
tissue using the oxygen transport model described in (Herman et al 2006; Huppert et al
2007). The rate of transport across each vascular segment can be described by first-order rate
equations and depends on (i) the steady-state flow and (ii) the relative permeability of the
segment which can be determined from the baseline oxygen saturation.

Increased CMRO3, in the extra-vascular compartment is approximated by a canonical temporal
basis function as described in (Huppert et al. 2007). As with the arterial resistance state,
CMRO, changes are described by a gamma-variant functional form (refer Table 2). Both the
timing and amplitude of this function are estimated as parameters within the model. Unlike
arterial resistance changes only one basis function is used as a regressor maintaining that
evoked CMRO, changes are expected to be elevated compared to baseline.
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2.1.3. Hemodynamic Observation Models—The second component of our overall
model is a set of observation equations that represent the relationships between the underlying
physiological variables in the model and the fMRI or optical measurements. Such an unified
model of the physiology allows different multimodal information to be fused into a single
consistent estimate of cerebral activation. This provides a mechanism to combine both
complementary measurements like BOLD and flow, with partially redundant information, such
as the common deoxy-hemoglobin contrast between optical and BOLD signals. Since these
measurement models are modular, this framework allows combinations of the different data
sets, namely fMRI, optical, or multimodal data sets, to be utilized and examined for
consistency.

FMRI Measurement Model: The BOLD signal has a complex origin arising from both intra-
and extra-vascular water signals (Buxton et al 2004; Nair 2005; Obata et al 2004; Ogawa et
al 1990). In our model, we consider the contributions to the BOLD signal of all four vascular
compartments (artery through pial veins) and susceptibility effects on the extra-vascular water
signal. We model the BOLD signal according to the equations for intra- and extra-vascular
contrast described in (Obata et al 2004) based on the theory by Yablonskiy and Haacke
(YYablonskiy and Haacke 1994).
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At the 3 Tesla field strength used in this study, r, = 100s1 and v, = 80.6 s (Mildner et al.
2001). Syy and Sgy are the fractional baseline contributions of the intra- and extra-vascular
signals respectively. These parameters include a bulk representation of the intrinsic relaxation
rates of water molecules in the intra- and extra-vascular space. Since there is debate over the
exact value of this parameter (Lu and van Zijl 2005; Mildner et al 2001), we include it as an
additional unknown parameter (¢ = Sy / Sgy) estimated by the model. In the above equations,
V,,is the ratio of blood volume of the nt compartment to tissue volume. The term, V,, represents
the baseline volume fraction and acts as a partial volume correction factor for the BOLD

Vo= V=0 : S
measurement (i.e. - ). Vg is estimated in the model using the minimization
procedure and is included as a calibration factor for the magnitude of the BOLD signal. Since
this factor has explicit physiological meaning, its value contributes to the calculation of the
baseline physiological values.
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The measurement sensitivity weighting factors (wy) in Eq. 1 are assumed to be equal for all
four vascular compartments (w,=1). The measurement sensitivity factors describe the intrinsic
sensitivity of the measurement process and depend on MR physics, the physical vessel
dimensions and vessel orientations. In general, the MR measurement sensitivity is a highly
complex function of the underlying vasculature (e.g. (Boxerman et al. 1995)). Our current
assumption of equal measurement sensitivities implies that the vascular contributions to the
signal directly reflect the relative changes in contrast. For example, the largest contribution to
the BOLD signal arises from the venous compartments because the oxygenation changes are
the largest in these veins due to washout effects. This assumption should be examined more
closely in future work. We use a direct projection of the normalized arterial blood flow changes
to model the ASL signal.

NIRS Measurement Model: The NIRS technique measures spectroscopic changes in the
optical absorption properties of tissue (Obrig et al 1996; Villringer and Chance 1997). These
measurements are related to changes in mean oxy- and deoxy-hemoglobin concentrations by
the modified Beer-Lambert law (Cope et al 1988; Delpy et al 1988). We assume that the
measurements reflect the weighted sum over the vascular compartments i.e.

(2)

In this equation, g()) is the molar extinction coefficient of each hemoglobin species and PPF
(M) is the effective path-length for wavelength (1) traveled by photons on the diffuse path
through the brain cortex (Hiraoka et al. 1993). The subscript n indicates the vascular
compartment. In principle, NIRS measurements are related to the absolute changes in
hemoglobin concentrations provided that the effective path-lengths are known (Cooper et al.
1996). However, in practice, such path-length factors are difficult to determine without
additional spatial information (Hiraoka et al 1993; Huppert et al 2006a) or direct measurement
(Duncan et al 1995; Leung et al 2006). In our model, hemoglobin changes are normalized to
the baseline volume and therefore the value of absolute baseline total hemoglobin is needed to
scale between the changes predicted in the model and the true measurements. We include a
scaling value (Q)rs) as an additional parameter in the model to compensate for the uncertainty
introduced in the exact quantification of the hemoglobin changes measured with NIRS. The
measurement model for NIRS is given by the equation

A[HbX(7)]
NIRS Z € X ,Z,W” ’ W]

HbX:{Hh()g HbR}

Ya()=Q

(3)

Note that if the optical path-length is known then the scaling factor can be used to calculate
the baseline hemoglobin concentration (Q=[HbT,]-PPF). The normalized term [AHbX /
HbT] can be calculated directly from within the model. The vascular weights (wp) in Eq. 2
and 3 describe the sensitivity of NIRS to the vascular compartments and are assumed to be
uniform for the arteries through veins (w,=1). The pial venous compartment constitutes larger
blood vessels and contributes to changes measured by both the fMRI and optical imaging.
Sensitivity to vessels decreases with increasing radius for NIRS measurements (Liu et al.
1995) and conversely increases for gradient echo BOLD-fMRI (Boxerman et al. 1995).
Therefore, to account for measurement discrepancies, the weight given to the contribution of
the pial vein in the NIRS measurement is included as an additional model parameter (wpja<1).
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This allows the NIRS and BOLD measurements to potentially have different weights for the
pial compartment and these measurements can be modeled to sample different effective pial
compartments.

2.1.4. The vascular inverse model—There are a total of 20 unknown parameters in the
full model (see Table 3). The full data model utilizes measurements of blood flow, volume and
oxygen saturation from combined multimodal optical and ASL data. The baseline oxygen
saturation contents of the arterial, capillary, and venous compartments have been included as
three parameters within the model. These oxygen saturation parameters were fixed in the
models using the fMRI only and optical only data. In the fMRI alone and NIRS alone models,
there are a total of 15 unknown model parameters since we fix the values for baseline oxygen
extraction parameters and additionally drop two parameters specific to NIRS/fMRI
respectively.

CMRO,, and arterial resistance changes together with the unknown parameters associated with
the model's differential equations can be determined from the inverse of the model. These
parameters are estimated by non-linear curve fitting of the temporal dynamics of observable
hemodynamic parameters. We used a non-linear Levenberg-Marquardt algorithm (Marquardt
1963) implemented in Matlab (The Mathworks; Natick, MA USA) to calculate the model
parameters that define the CMRO, and arterial dilation functions (Matlab function
Isgnonlin). In contrast to previous approaches that consider only the magnitude of
hemodynamic changes, we account for the full temporal dynamics of the response and
minimize the model using the entire time course of the hemodynamic changes in a single cost
function. Thus, the model is minimized using the temporally vectorized array of discrete
measurements to simultaneously fit the entire dataset. I.e.

y
_ B()LD|1=1 BOLD |r=2
Y y
ASL|t:1 ASL|r=2
Q =argmin||[y - C(Q)]" - R - [y - CQ)] |l @)

where R is an estimate of the variance of the measurement error for each measurement type
and superscript T indicates the transpose operation. The estimates of the measurement error
variances were calculated from the error in the estimate of the mean evoked hemodynamic
responses calculated from the linear deconvolution model (described in section 2.2.3) from
each experimental session and normalized across the subjects. Weighting the squared model
error of the different measurement types in the minimization cost function helps to weight the
model fit to more confident observations. This routine provides the minimum variance
unbiased estimator for a general linear model as described in (Huppert et al. 2007) and allows
the fusion of multimodal information using a priori knowledge of the measurement error in
each imaging method. In the model-fitting routine, the error cost metric is minimized by
refining the model parameters. To improve the stability of the inverse problem, we constrain
the parameter set within the range of physiological bounds (Table 3). The fitting routine was
iterated until a predefined convergence criterion (10 times the variance of the measurement
error) was met. This took approximately 6-10 hours per fitting procedure (Pentium(R)-4 CPU
3.00 GHz). The error bounds of our model prediction were examined using a Markov Chain
Monte Carlo sampling of the parameter-space as described in (Huppert et al. 2007). Because
of the high computational time involved, it is currently impractical to run this model on a per
voxel basis, but will be explored in future extensions of this work.
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2.1.5. Estimation of baseline physiology from model parameters—In our previous
work (Huppert et al. 2007), we described how values for the baseline physiology could be
extracted from the model estimates of baseline volume, vascular transit time, and baseline
oxygen saturation. For example, the vascular mean transit time, which is defined as the ratio
of baseline blood volume and flow, can be estimated from the temporal delay between the
arterial (i.e. ASL flow) and venous (i.e. BOLD) responses. These biomechanical parameters
provide a link between the dynamics of the evoked response and the baseline state. In addition,
both baseline hemoglobin concentration ([HbT]) and baseline vascular volume fraction (V)
are estimated in the model as the scaling factors applied to the NIRS and BOLD observations
respectively (detailed in (Huppert et al. 2007)). These calibration factors allow us to assign a
physiological scale to the normalized changes estimated in the model.

The estimates of baseline blood volume fraction from the BOLD measurement model (or
equivalently total hemoglobin concentration) and the mean vascular transit time (z) are
sufficient to estimate the value of baseline blood flow using the steady-state relationship,

CBV, B [HbTy] - MW,
HGB - prissue

1
CBFy= p

(5)

MWy, is the gram molecular weight of hemoglobin (64.5 kDa) and pyjssue IS the density of
brain tissue (=1.04 g/mL (DiResta et al. 1991)). When the full set of measurements (ASL,
BOLD, and NIRS) is used to cross-calibrate the estimates of absolute values for the baseline
blood volumes, the ratios of the vascular volume fraction (in volume blood per volume tissue)
and baseline hemoglobin concentration (moles Hb per volume tissue) can be used to calculate
the hemoglobin content of blood (HGB) in gm Hb/volume blood. In the absence of estimates
of both Vg and [HbTj], in equation 5 HGB can be assumed from literature or measured (in adult
humans HGB is typically 12-18 gm/dL (Habler and Messmer 1997)).

Atbaseline steady state, relative CMRO,, is the product of blood flow and the oxygen extraction
fraction across the compartments. In this model, baseline oxygen saturation is either estimated
(using the full multimodality data set only) or assumed from the analysis of the complete data
set. Thus, baseline CMRO>, is calculated directly from the baseline blood flow and absolute
oxygen extraction (OE; OE =5j,02-54,t02),

CMRO | =H,, - HGB - CBF,, - OE,
2|0 (6)

where Hp, is the Hufner number (H,=1.39 mL O,/gm Hb (Habler and Messmer 1997)).

2.2. Experimental methods

The data used in this study previously published in (Huppert et al. 2006b) and recorded
simultaneous pulsed arteriole spin labeling (PASL) and NIRS measurements. Five subjects
were included in this study (4 male: 1 female). Subjects performed a brief 2-second duration
finger walking task using their right hand. All subjects were right-handed. The stimulus was
jittered evenly on a 500ms time-step, which allowed for the response to be estimated at 2Hz
with fMRI. The length of the inter-stimulus interval (ISI) ranged between 4 and 20 seconds
with an average inter-stimulus interval period of 12 seconds. The timing of the stimulus
presentation was synchronized with the MR image acquisitions and generated with a custom
written Matlab script. Each run lasted 6 minutes and consisted of between 27 and 32 stimulus
periods. This was repeated 4-6 times for each subject during the course of one scan session
(approximately 90 minutes in total time for each session including position of the NIRS probe
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and structural scans). The human research committee at the Massachusetts General Hospital
approved all protocols.

2.2.1. NIRS acquisition—The NIRS probe consisted of two rows of four detector fibers and
one row of four source fibers arranged in a rectangular grid pattern and spaced 2.9 cm between
nearest neighbor source-detector pairs as shown in Fig. 2. The probe was secured to the subject's
head over the contralateral primary motor cortex (M1). This was verified using vitamin-E
fiducial markers in the anatomical MRI. NIRS measurements were taken using a multi-channel
continuous-wave optical imager (690nm and 830nm; 18mW and 7mW respectively) (CW4
system, TechEn Inc., Milford, MA USA). These signals were synchronized to the timing of
the fMRI. Monte Carlo simulations were used to determine the mean photon trajectories by
simulating the diffusion through tissue-segmented anatomical volumes for each subject using
the locations of the optodes referenced by the fiducial markers (Huppert et al. 2006a). A mean
partial path-length correction of 4.7+1.5 and 4.8 1.5 (830nm and 690nm respectively; N=5)
was calculated from the fraction of the path-length through the brain cortex based on these
simulation results (see Fig. 2B). Methods and results for the collection of this data set have
been previously published in (Huppert et al. 2006b). Optical data was sampled at 100 Hz and
down-sampled with a Nyquist filter to 10Hz for analysis in the model.

2.2.2. Functional MRI acquisition—Pulsed ASL measurements were carried out at 3T on
a Siemens Allegra MR scanner using PICORE (proximal inversion with control for off-
resonance effects) labeling geometry (Wong et al. 1997) with Q2TIPS (second version of
quantitative imaging of perfusion by using a single subtraction with addition of thin-section
periodic saturation after inversion and a time delay sequence) saturation (Luh et al. 1999) to
impose a controlled label duration. A post-label delay of 1400ms and label duration of 700ms
were used, with repetition and echo times of 2s and 20ms, respectively [a=90°]. Echo Planar
Imaging (EPI) was used to image five 6mm slices (1mm spacing) with 3.75mm in-plane spatial
resolution. The PICORE labeling scheme allowed collection of BOLD signals using the
interspersed control images from the acquisition. The fMRI images were motion-corrected
(Cox and Jesmanowicz 1999) and spatially smoothed with a 6mm Gaussian kernel. Blood flow
and BOLD signals were separated by first extracting the even-numbered (ASL label and BOLD
contrast) and odd-numbered (BOLD contrast only) series of images. These two time-series
were independently interpolated using cubic spline functions and then the temporally-aligned
series were subtracted to yield the isolated spin-label contrast. This approach was similar to
the linear “surround subtraction” method described by Lu et al to give the minimal cross-talk
between the ASL and BOLD signals (Lu et al. 2006). Structural scans were performed using
a T1-weighted MPRAGE (magnetization prepared rapid gradient echo) sequence
[1x1x1.33mm resolution, TR/TI/TE/a = 2530ms/1100ms/3.25ms/7°].

2.2.3. Preprocessing of evoked hemodynamic responses—Both the NIRS and fMRI
hemodynamic responses were separately estimated using a 2-Hz resolution finite impulse
response (FIR) linear model as described in (Huppert et al. 2006b). High temporal resolution
was achieved by designing the stimulation protocol using a jittered inter-stimulus interval and
lowering spatial coverage and resolution for the EPI sequence. This may limit the use of this
method in general studies but were necessary to get the effective sample rates needed for our
model analysis. The FIR approach assumes a linearly additive hemodynamic model to estimate
the high-temporal resolution responses but avoids canonical assumptions that could restrict the
temporal characteristics of the estimates. Second order linear trends were removed from the
estimated responses. The epoch timing for this deconvolution was based on the stimulus
presentation timing rather then the subject's motor response. However, the subject motor
response times were similar to presentation times with a jitter of ~100 ms as judged by an
optical sensor placed on the fingers which was used to record the tapping event as described
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in (Huppert et al. 2006b). Due to technical limitations, this recording was only available on 3
of the 5 subjects. Region-of-interest averages for both data sets were independently chosen
from measurements showing statistical changes (p<0.05) based on mixed effects analysis using
an activation time window of 2-7 seconds to define the t-statistic as described in (Huppert et
al. 2006b). The fMRI responses were restricted to voxels beneath the optical probe judged
manually based on the fiducial markers on the probe. ASL and BOLD responses were
independently estimated. Significant NIRS channels were defined based on the oxy-
hemoglobin estimate.

The resulting BOLD, ASL, and NIRS time-courses for each subject were variance normalized
and averaged into a single group average. In this work, the high computational load of the
inverse routine required us to predetermine the single-trial hemodynamic response function
using the FIR model rather than run our state-space analysis directly on the full data set (c.f.
(Deneux and Faugeras 2006)). However, the linear assumption of the FIR model can be
justified (e.g. (Cannestra et al. 1998)) for the minimum inter-stimulus interval (>4 seconds)
used in this study. We acknowledge that the temporal resolution is limited by the acquisition
techniques of fMRI and ASL methods and may currently limit the utility of this method in
general studies since the response characterization of our vascular model makes use of high-
temporal resolution response to estimate the vascular parameters.

The underlying vascular and metabolic changes are provided by a non-linear inverse solution
to our vascular forward model and estimated by curve-fitting the observed hemodynamic
responses. In order to illustrate the performance of this inverse model, we demonstrate the
characteristics of our model using three examples that examine the local precision, global
accuracy, and physiological consistency of our model when used to analyze fMRI, NIRS, or
multimodal data.

3.1 Example 1. Parameter sensitivity and local stability of the inverse problem

A requirement of a well-poised inverse model is that the number of independent measurements
is equal to or greater than the number of free model parameters. This is informally referred to
as the “counting rule” and can provide a qualitative common-sense check for such a model
(e.g. (Bamber and van Santen)). To begin our investigation of our windkessel model, we will
first discuss this qualitative rule. Our model used for analysis of the fMRI signals has a total
of 15 free parameters. Although the ASL and BOLD responses (recovered at 2Hz) contain a
greater number of sample points, each sample point does not represent an independent
measurement due to the inherent temporal autocorrelation of the evoked response and partial
correlation between measurements. In order to apply the counting rule, we must estimate the
number of independent degrees-of-freedom to these measurements. The BOLD response is
believed to have up to three distinct phases; an initial dip period, a main response, and a post-
stimulus undershoot. In order to correctly model the overall BOLD response, for example in
ageneral linear model, three independent canonical functions should be used with one for each
of these phases. Since each canonical function requires three degrees-of-freedom for the
amplitude, first order timing (e.g. onset or time-to-peak) and second order timing (e.g. temporal
width), it follows that a total of nine parameters should be included to model all three phases
of the BOLD response. Similar arguments can be applied to determine that oxy- and deoxy-
hemoglobin are expected to contain nine degrees-of-freedom each and flow to contain six (with
an assumption of no “initial dip” period). By this argument, we can expect that the BOLD /
ASL fMRI data should have the minimum number of independent degrees-of-freedom needed
for our model. This argument, however, is at best only a qualitative deduction. In order to more
rigorously investigate the ability to determine all model parameters from fMRI measurements,
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we must turn to more formal mathematical definitions of model sensitivity and parameter
identifiability.

The stability of our inverse model indicates the feasibility of our model to estimate the model
parameters from experimental data and requires that measurements be sensitive to changes in
each of the estimated model parameters (reviewed in (Bamber and van Santen)). Model
sensitivity can be examined using a variety of numerical methods and has been recently
discussed in the context of a similar vascular model by (Deneux and Faugeras 2006). However,
model sensitivity does not guarantee that the estimated values are accurate or unique. Instead,
it allows us to test whether a solution to the inverse problem exists. Because of the non-linear
nature of our model, we focused on local data perturbation methods to examine the theoretical
sensitivity of measurements to changes in the model parameters.

Model sensitivity quantifies the influence of each parameter on the output of the forward model.
Two parameters; namely, the mean vascular transit time (z) and the Windkessel vascular
compliance factor (), are primarily involved in modeling the dynamic relationship between
flow and volume. We begin our investigation of model sensitivity by qualitatively examining
whether these two parameters affect the temporal dynamics of the hemodynamic response and
if it is plausible to estimate these values based on relative temporal dynamics. Based on our
model, we predicted that these two parameters would have distinguishable effects on the
relative temporal dynamics of the BOLD and ASL measurements. For example, in Fig. 3A we
see that if vascular transit time is increased (i.e. with constant baseline flow and thus increased
baseline volume), the BOLD response amplitude is reduced and the initial dip component is
removed. In particular, a longer transit time increases the temporal delay between arterial and
venous responses. Likewise, increases in the value of f lead to larger and quicker washout
changes that produce larger magnitude changes in BOLD and deoxy-hemoglobin and reduce
the relative time-to-peak value of these responses. The compliance parameter also has
pronounced effects on the relative magnitude (i.e. ratio) of the oxy-, deoxy-, and total-
hemoglobin changes that are measured by NIRS reflecting differing degrees of washout. We
note that the relationships between multimodal measurements are uniquely related to these
parameters when compared to the individual evoked responses considered independently.

The sensitivity of our model each parameter in the model can be numerically quantified by
examining the Jacobian of the model with respect to the model parameters. We examined the
rank and condition of the Jacobian throughout the bounds of the parameter space to determine
if the set of measurements was sensitive to each model parameter. We examined these
properties for the full multimodal, BOLD and ASL, and NIRS observation models. We found
that the Jacobian was full rank for the parameters estimated in each of these models, which
implies that an inverse of the model around a localized point is theoretically possible. Singular
value decomposition of the Jacobian provided similar conclusions and showed that the number
of independent components was equal to the number of model unknowns (for further discussion
refer to (Huppert 2007)). In comparison, when we examined the model with BOLD only
measurements, we found that it was not possible to uniquely estimate many of the parameters
of the model, including the separation of flow and consumption changes (i.e. the Jacobian was
no longer full rank). This finding was consistent with the previous results from Deneux and
Faugeras (Deneux and Faugeras 2006), which attempted similar analysis of BOLD signals
alone and found that many but not all of their model parameters could be independently
determined. Here, we find that if we use both ASL and BOLD measurements, the model is
better defined because information about the model parameters can be additionally determined
from the interrelationships of these signals. To further explore the limits of the model, we
examined the Jacobian of each model as a function of the simulated sample frequency and
determined that the minimum acquisition speed needed was approximately half of the mean
transit time. This implies that the estimation of this model will require a minimum sampling
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rate of above 1 Hz for both flow and BOLD signals, which is unfortunately faster than is
possible in most current fMRI studies and was only possible in this study using jittered
stimulation presentation.

A further metric of model sensitivity is the variance inflation factor (I'), which quantifies the
minimum uncertainty that can be theoretically expected in the estimate of each model
parameter based on an analysis of the slope (Jacobian) of the minimization function around a
given local model solution. This analysis allows us to examine how distinguishable the effects
of one parameter are from the other parameters. Using the notation discussed in (Deneux and
Faugeras 2006), for a small change in one parameter (8;), the perturbation of the observation
varies by J;dé;, where J; denotes the Jacobian of the forward model with respect to the ith
parameter. If the Jacobian associated with the parameter under consideration is not orthogonal
to the Jacobian matrix with respect to the remaining parameters (denoted J,), then the cross
talk between parameters results in non-uniqueness of the solution because an error in one
parameter can be compensated by errors in other parameters. The maximum precision of each
parameter can be estimated for a given level of noise in the measurements from the variance
inflation factors as described in (Deneux and Faugeras 2006) using the following equation.

o -1 -
O 1=a, (- 2) " 72)| -
var(6) > I'7! - var(Y) @

where J! represents the transpose of the Jacobian matrix. The smaller the corresponding
diagonal element of the variance inflation matrix (I';), the more precisely the 6; parameter can
be determined for a given variance in the observation (Y) and the more sensitive the data set
is to changes in the parameter under consideration.

In Fig. 3C, we examine the sensitivity of the measurements to changes in model parameters
used in each fitting procedure. Note that the full model (ASL, BOLD, and NIRS) has more
degrees-of-freedom than fMRI alone, NIRS alone, or NIRS and BOLD models since the value
of the baseline blood oxygen saturation is fixed in these models (refer Table 3). The analysis
was conducted for a linearization about the parameter set determined from the model fits to
the empirical data (Table 4). The variance inflation matrix was inspected for other linearization
points (not shown) and was found to be in quantitative agreement to these results.

3.2 Example 2. Simulation results and global identifiability

The analysis of the Jacobian matrix described in our previous example indicated that the
observation sets were theoretically sensitive to the parameters being estimated and thus the
model was expected to be locally invertible. However, the Jacobian can only be defined about
a local linearization point in non-linear systems and such sensitivity analysis can be used to
probe only the local precision of the model but not its global identifiability. Using this analysis
we know that a local solution can be determined but we do not know if this solution is unique.

To investigate the uniqueness of an estimated solution, it is necessary to examine the ability
of the model to correctly determine the parameter set from a global search of the parameter
space. We ran forward simulations of the model using a sampling of the physiological states
and parameters from within the expected physiological ranges (refer to Table 3). To emulate
the fMRI and NIRS experimental data, the measurements were simulated at a 2Hz sample
frequency with a random additive instrumental noise term (10:1 contrast-to-noise ratio to
approximately match the data). We reconstructed system parameters for each simulation using
the fMRI data alone, the NIRS data alone, and the full multimodality data set to explore the
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accuracy of the model to infer the physiological states. For all reconstructions, the Levenberg-
Marquardt minimization algorithm was initialized at a random position within the
physiological range of the parameters. The same initialization was used for each modality set.
Reconstructions were iterated until a set convergence criterion was met (approximately 106
iterations that took around six hours per model estimation). A total of 350 simulations were
run for each of the three data sets.

In Fig. 4A, we show parametric plots of the simulated (truth) values for the parameters used
in the forward simulation against the reconstructed values obtained from each of the three data
sets (NIRS only, BOLD and ASL, or NIRS, BOLD and ASL data). The ability of a model to
predict one subset of a data set (in this case the NIRS measurements) from analysis of adifferent
subset (the fMRI data) is often used as a strategy to asses if a model has been over-
parameterized. We found that relative CMRO, and arterial resistance changes (ARa) can be
estimated accurately with both single and multi- modality measurement sets, consistent with
the tests of local sensitivity. We examined the accuracy of the estimation of key static and
response-related parameters in the model. We found that the estimates of the Windkessel
vascular reserve parameter () had the most variance but could still be estimated fairly
accurately in spite of a slight systematic model under-estimation bias at high values of g with
the optical or fMRI only data sets. In Fig. 4B, the covariance in the error of the estimates for
the parameters is plotted. The lack of high correlation indicated a low interdependence between
variables and minimal cross-talk between these parameters in the model. We noted the largest
cross-talk (R2=0.07) between the vascular transit time through the pial-venous compartment
and the relative change in CMRO». We also observed negative correlation between CMRO,
and the blood oxygen saturation parameters in the BOLD/ASL/NIRS model as also noted in
(Huppert et al. 2007) (not shown). Recall that baseline oxygen saturation was not varied in the
NIRS or fMRI alone models since we found these parameters were not identifiable in the
reduced data sets.

3.3. Example 3. Estimating relative CMRO, changes from empirical measurements

As a final example of the inverse procedure for our vascular model, the model was used to
analyze empirical measurements of hemodynamic changes in the human motor cortex
following a 2-second finger-tapping task. In order to examine the estimate of the CMRO,
changes and other model parameters given in Table 3, the model was first fit using the combined
NIRS, ASL, and BOLD data set. The values of baseline blood oxygen saturation from the
model fit to the full data set was then fixed and the model was applied to the ASL and BOLD
data and finally to the NIRS only data.

The fits of the fMRI only and NIRS only data sets closely predicted the NIRS and fMRI data
respectively as shown in Fig 5. The 75% confidence bounds for the model fit to each
measurement and the model predictions of the opposing measurement set are shown as dotted
lines in Fig. 5. To verify that the results of the model fit were independent of the initial position
of the Levenberg-Marquardt algorithm, we repeated the minimization for different initial seed
positions (see Fig. 6). The model fit using the group-averaged response curves was consistent
with the mean of the fits to the five individual subjects (Fig. 6). Inter-subject variations in the
parameter estimates were observed, but remained consistent whether the reduced or full data
sets were used in the fitting. The values of the estimated parameters and uncertainties are given
in Table 4. In Fig. 6, we graphically present the estimates for the key model parameters and
uncertainties for both the group and individual subject analysis. The estimated dynamic
changes in arterial diameter and CMRO,, are shown in Fig. 7.
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3.4. Calculated baseline physiological properties

Based on the values of the estimated biomechanical parameters presented in Table 4, several
additional physiological quantities can be determined and are presented in Table 5. Importantly,
the vascular transit time and the vascular volume fraction, needed to scale the BOLD signal
were both precisely determined. Vascular volume fraction, in units of milliliters of blood per
milliliter of tissue, is easily converted to blood volume, in units of milliliters of blood per 100
grams of tissue, given the approximate density of brain tissue (1.04 g/ml (DiResta et al.
1991)). This baseline blood volume divided by the vascular transit time provides an estimate
of baseline blood flow. Likewise, baseline CMRO, can be calculated from the baseline blood
flow and oxygen saturation within the venous compartment. We were able to precisely estimate
the venous oxygen saturation only in the model using the combined fMRI and NIRS data and
we found that this estimation was not as accurate using only the fMRI only data. Thus, we
fixed the value of baseline vascular oxygen saturations in the model estimates using the fMRI
only or NIRS only data. Prior studies have noted that the oxygen extraction fraction varies only
a few percent between different regions of the brain and this justifies constraining the range of
expected cerebral venous oxygen saturation to the range of 60+9% based on previous
measurements in the healthy adult brain (He and Yablonskiy 2007; Raichle et al 2001). The
estimated baseline blood volume, blood flow, and oxygen consumption using different
combinations of fMRI and NIRS data are shown in Table 5. Although we assumed a value for
the resting oxygen extraction in the fMRI-only and NIRS-only models, we found that the
estimate of baseline blood flow and oxygen consumption based on the estimated scaling
parameters and vascular transit time from the fMRI data alone was consistent with the estimate
from the NIRS alone fit and also with the combined fMRI and NIRS fit. The values of the
estimated baseline physiology for the group data and the mean of the results from the five
individual subjects are presented in Table 5.

4. Discussion

Measured hemodynamic responses are the net result of the competing effects of an increased
metabolic demand for oxygen and an increased supply of oxygen transported by hemoglobin
through the flow-inducing response. However, the role of variable baseline physiology and
vascular biomechanical properties in the interpretation and reproducibility in the measurements
of these responses has been largely under-appreciated. In this work, we have introduced an
inverse model for the analysis of multimodal hemodynamic data which depicts how baseline
physiology and vascular structure affect the relative magnitudes and temporal dynamics of
evoked signals. Although our model is similar to previously published models of the vascular
system (reviewed in (Buxton et al. 2004)), our approach focuses on the dynamics and relative
timing differences observed between multimodal measurements rather than the absolute
magnitude of such signals. This allows us to characterize of the vascular properties more
accurately by considering the interrelated dynamics of multimodal measurements in addition
to the changes in absolute magnitude. The vascular and oxygen transport phenomena are
considered simultaneously in this work, which creates a unified multimodal model that enables
incorporation of both measurements of blood flow and oxygenation changes into a single and
self-consistent description of the underlying physiology. In this way, we demonstrate that
BOLD signals can indirectly add information about both the flow-volume relationship and
CMRO, changes. We suggest that it is possible to infer blood volume changes from
measurements of blood flow (ASL) and BOLD alone but note that these estimates are subject
to the assumption of baseline values for oxygen extraction from the vascular compartments.
Similarly, we report that blood flow changes can be inferred using measurements of blood
volume and oxygen saturation changes alone (i.e. NIRS measurements). The calculated
estimates of CMRO, and arterial resistance changes were largely consistent with those obtained
when we used the full complementary set of fMRI and NIRS information.
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4.1 Physiological relevance of estimated model parameters

Since the estimation of the model parameters was restricted to physiological ranges based on
previous literature, it is expected that the parameter values estimated from the data are also
consistent with this literature. The estimate of the Windkessel vascular reserve parameter ()
is consistent with values estimated from evoked responses found in (Jones et al 2002;
Mandeville et al 1999b; Wu et al 2002; Zheng et al 2005) and in approximate agreement with
the steady-state flow-volume relationship (Grubb et al.). Our estimated total mean vascular
transit time (including pial vein) (t = 3.3-3.8sec) is consistent with cortical gray matter values
measured with dynamic susceptibility contrast-enhanced MRI methods (DSC-MRI) (t =
1.2-6.9sec as compiled in (Ibaraki et al. 2006)) and previously applied to modeling the BOLD
signal (Buxton et al. 2004).

We found that secondary calculations of physiological values based on the estimated
parameters were also consistent with previous literature. This is further validation of our model
since our analysis did not explicitly impose this consistency. For instance, while there are
physiological bounds on the magnitude of both flow and consumption changes, there is a much
weaker constraint on the ratio of flow to consumption changes. Our estimated ratios of peak
blood flow to peak blood volume changes of 3.0 to 3.4 (Table 3) were consistent with previous
literature values of 2-4 (Huppert et al 2007; Jones et al 2002; Mandeville et al 1999a; Martin
et al 2006; Wu et al 2002). The determined values of the flow-to-oxygen consumption ratio
between 1.5:1 to 1.8:1 is also consistent with literature measuring these changes in comparable
experiments where values of 1.5:1 to 3:1 have been reported in studies using fMRI (Boas et
al 2003; Dunn et al 2005; Hoge et al 1999; Kastrup et al 2002) and higher ratios of 5-6 have
been reported in PET studies (Fox and Raichle 1986). Although our estimated flow:
consumption ratio is in the range of previous literature values, our estimates that utilize the
ASL data were somewhat lower than the average value from the fMRI literature (~2:1). We
hypothesize that this may be a result of an unaccounted partial-volume error in the ASL
measurements arising from our defined region-of-interest and require further investigation.
This underestimation of flow is further supported by the higher predicted flow changes from
the model fit of the NIRS data set (Fig. 3A). In the ASL model, the ASL measurements were
considered direct measurements of the relative flow changes and no additional scaling
parameters were applied unlike the BOLD and NIRS measurements where calibration factors
were estimated. We note, however, that fitting a scaling factor on both the ASL and BOLD
signals may give rise to a non-unique estimation of CMRO> changes and baseline CMRO,
from the ASL and BOLD only data set. The same does not apply to parameter estimation with
the NIRS only data set because only one partial volume term was applied to scale oxy-, deoxy-
and total-hemoglobin measurements. The value of the NIRS scaling factor does not change the
ratio of hemoglobin changes (i.e. the peak oxy-/deoxy- hemoglobin changes normalized to the
peak total-hemoglobin change) which is the relevant measure giving sensitivity to § and t (see
Fig. 2).

4.2 Estimates of baseline physiology

The estimates of baseline volume, flow, and CMRO», were consistent between the three dataset
combinations used in the model fitting procedure (Table 5). The estimate of baseline blood
flow from the three data sets was 86 ml/100g/min (mean) [range 82-93 ml/100g/min].
Previously reported values of baseline blood flow in human cortex range from 80-100 ml/100g/
min in gray matter and ~20 ml/100g/min in white matter as measured using positron emission
tomography (PET) (reviewed in (Coles 2006; Ito et al 2005)). Our estimates derived from
evoked changes represent gray matter estimates of flow, volume, and CMRO,. This explains
why our estimates of blood flow are higher than the reported values that average gray and white
matter (e.g. ~ 44 m1/100g/min from data complied in (Ito et al. 2005)).
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Our estimate of baseline oxygen extraction determined from the combined BOLD, ASL, and
NIRS data set was 36.6+0.2 %. This value is consistent with values reported in the literature
of 35-43% from PET (Diringer et al 2000; Raichle et al 2001) and quantitative BOLD-fMRI
38+5% (He and Yablonskiy 2007). In the fMRI only and NIRS only models, the value of
oxygen extraction was assumed based on the value obtained from the full model fit. The
additional estimation of this parameter introduced considerably more uncertainty in the
recovered value of CMRO, from these models. We consider the assumption of oxygen
saturation in these models reasonable given that previous studies have demonstrated fairly
small ranges for these values in normal, healthy populations. However, this assumption poses
a potential source of systematic error for the application of our model to atypical subject
populations.

Lastly, we estimated baseline cerebral oxygen consumption (CMRO,). Our estimate of 5.2 ml
0,/100g/min (mean)[range 5.2-5.4 ml O»/100g/min] is higher than reported values of 3.3 £
0.5 ml O»/100g/min (lIto et al. 2005). However, the values reported in these PET studies are
based on flow measurements that represent the average of both gray and white matter values.
Baseline CMRO5, in gray matter is estimated to be ~ 3.5-8 ml O»/100g/min using the literature
ranges for gray matter blood flow, oxygen extraction, and hemoglobin content referred above.

4.3. Advantages of the bottom-up model

Our model used a curve-fitting approach to estimate the underlying changes of CMRO, and
arterial resistance. The use of such an inverse model allows us to incorporate our multimodal
data into a unified estimate of the underlying physiology. In contrast to our approach, most
previous formulations of vascular models have been built around a top-down (or deductive)
approach where CMRO, changes are estimated from the set of hemodynamic measurements.
Since deductive models calculate CMRO, changes directly from measurements, the results
directly reflect the quality of the data used. In such models, CMRO, changes can be recovered
only at the lowest spatial and temporal resolutions of the data used. In addition, the error in the
estimate of CMRO, is compounded by the errors in multiple measurements and the resulting
estimates generally have errors greater than the noisiest measurements used.

Inan inductive framework, measurements are forward-modeled from changes in the underlying
states (i.e. arterial resistance and CMRO>). The estimate of the underlying states requires the
solution of an inverse problem, which is more computationally intensive than the equations
used in the deductive approach. However, the distinct advantage of the inductive approach is
that model inversion may be possible with limited sets of observations (as in the fMRI alone
analysis) and redundant information can be fused into estimates that maximize the joint
probability of all observations (as in the full multimodal analysis). The inductive framework
predicts all possible observations, not all of which are necessarily measured thus allowing the
use of a smaller subset of possible observations to estimate the parameters in the model.
Additionally, the inductive model may be used to take advantage of advanced state-space
estimation techniques, which are particularly useful for hidden-variable or under-determined
problems. Several methods have been described to solve problems in this framework, such as
the Kalman filter for dynamically variant systems. In this model, we use a time-invariant
approach, but recognize that advanced techniques could provide additional advantages in future
work. Lastly, the model setup described has the advantage of providing a mechanism by which
multimodality information can be fused within a Bayesian framework by incorporating
statistical error of each measurement and the corresponding observation model for each
modality. Recently several similar inductive models have been applied to interpretation of
fMRI data (Deneux and Faugeras 2006; Friston 2002) and the fusion of fMRI and EEG data
(Riera et al. 2005).
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4.4 Model assumptions and future extensions

The vascular model we have described is a simplified approximation of the complex behavior
of the cerebral system. Therefore, we must be cautious in the physiological interpretation of
such model-based results and identify how they may be affected by the assumptions made.
These approximations must be tested and either confirmed or refined based on future human
and invasive animal model studies. We believe that this model will provide a mechanism to
develop hypotheses which may facilitate future testing of the consistency of these model
assumptions with experimental evidence. Based on our model, we can make predictions about
how the evoked response is expected to change under different conditions, for example
hyperemia. Testing these hypotheses can provide a means to examine the validity of our
assumptions and provide corrections if necessary. We believe that the development of a unified
model to allow us to examine measurements from a variety of different imaging modalities,
experimental conditions, and animal models including both human (as described this work)
and invasive small animal studies (Huppert et al. 2007), is important to improving the
understanding of cerebral mechanisms in future work.

In our current model, the estimation of CMRO, from ASL and BOLD data assumes the values
of the relative volume fraction and the oxygen saturation of each vascular compartment. The
baseline volume fraction of the arterial, capillary, and venous compartments used in this study
were assumed to be 25%, 15%, and 60% respectively (Duong and Kim 2000). This assumption
may affect the accuracy of the BOLD calibration and estimated CMRO, changes to the extent
of the variability of these volume fractions between different cortical regions of the brain.

Although the dynamics of the fMRI response is sensitive to the baseline oxygen extraction, we
found that the additional fitting of the baseline oxygen saturations of each vascular
compartment in the fMRI only or optical only models created considerable uncertainty in the
estimation of relative CMRO,. We found that the most probable value of relative CMRO5
estimated from the fMRI data was consistent whether or not the oxygen saturation parameters
were allowed to vary in the model (19% * 6% maximum rCMRO, when fitting for oxygen
saturation), and the uncertainty of this magnitude was much larger unless oxygen saturation
was assumed. In previous work, Raichle et al have suggested that there was little spatial
variation in the oxygen extraction fraction across the normal healthy adult brain (Raichle et
al 2001) and, thus, we believe that it is reasonable to use an a priori assumption of oxygen
extraction values to help better constrain model. The validity of this assumption, however, is
suspect in pathological cases. We note that the oxygen saturation of each vascular compartment
could be estimated when the full set of blood flow, volume, and oxygen saturation (or BOLD)
changes were included in the model.

Furthermore, the estimates of absolute functional and baseline parameters rely on the
quantitative accuracy of the measurement methods which in turn depends on uncorrected
partial volume errors. In this work, we have neglected partial volume errors of the fMRI
methods. For the optical data, partial volume effects were corrected using the anatomical
information from MRI (Huppert et al. 2006a). However, we note that the accuracy of this
correction depends on the accuracy of the model of light propagation in the tissue. Uncertainty
in the estimated baseline blood volume, flow, and CMRO5 is linearly dependent on any
systematic errors in the partial volume correction. We found that the estimates of relative
changes in CMRO», blood flow or volume are largely unaffected by partial volume errors since
these parameters are normalized within the model and are affected only by uncertainties in the
temporal characteristics and relative magnitudes of the hemodynamic signals.

A final limitation of our model is its numerical complexity and the extensive computational
power needed to perform the model inversion and estimation of parameters. Because of this
complexity, we currently limited the analysis to only one or a few regions-of-interest within
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the brain. Systematic biases may thus have been introduced due to (i) the choice of the region-
of-interest, (ii) varying spatial resolution of the optical and fMRI measurements and (iii) the
potential for displacement of the locations of different functional contrast types due to the
underlying arterial and venous spatial structure (Huppert et al. 2006a). In future work, this
vascular model can be extended to incorporate a more accurate forward tomography model of
the optical measurements which may allow the reconstruction of CMRO> and flow volume
images. It should be noted that this will require of the use of more efficient computational
methods within future work in order to overcome the high dimensionality of the non-linear
imaging problem.

4.6. Conclusion

Hemodynamic changes are influenced by both evoked metabolic and vascular response, but
are also sensitive to the biomechanical, structural, and physiological state of the brain. By using
multimodal methods to investigate these changes and, in particular, by examining the dynamic
characteristics and inter-relationships between different measurement types, we have found
that multimodal fMRI measurements may be used to examine some of the underlying properties
of the brain. We have illustrated how our dynamic vascular model may be used to obtain
estimates of some of the underlying physiological properties of the brain based on curve-fitting
techniques and high-temporal resolution functional signals. Further confirmation and
validation of our approach would provide an important new approach for estimating evoked
changes in cerebral oxygen metabolism with fMRI without the need to calibrate the BOLD
signal with hypercapnia or assume a flow-volume relationship.
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Figure 1. Schematic outline of the vascular model

A vascular forward model (Panel A) based on a multi-compartment Windkessel (Panel B) and
oxygen transport model (Panel C) is used to estimate the changes in blood flow, volume, and
oxygenation in the arterial, capillary, and venous compartments. The model of hemodynamic
signals is evoked by underlying changes in vascular tone via arterial vasodilatation and changes
in the cerebral metabolic rate of oxygen (CMRO,). Observation models depicting the
biophysics of the optical and fMRI techniques relate the internal states of the model to the
measurable hemodynamic responses, which are compared to experimental data.
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Figure 2. Optical Imaging Setup

In this figure, we illustrate the setup used for NIRS recordings. Further details can be found in
(Huppert et al. 2006b). Panel A shows the location of the optical probe over the motor cortex
for a example subject. The “+” indicate the locations of the light source fibers and “0” indicate
the detector fiber positions. In Panel B is shown a coronal cross-section of the subjects
anatomical MRI with the fiber positions and measurement sensitivity profiles (contour plot)
overlain as described in (Huppert et al. 2006a). The BOLD response (thresh held at p<0.05) is
also overlain on the anatomical image. The dotted line in Panel A shows the approximate
location of this slice. In Panel C is shown the averaged evoked hemoglobin responses from the
performance of the motor task. The locations of the axis indicate the originating pair of source
and detector positions for the plotted response.

Sources
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Figure 3. Parameter sensitivity of the evoked hemodynamic response

This figure illustrates the effect of the biomechanical properties of the vascular network on the
temporal dynamics of evoked response. Panels A and B show qualitatively how the simulated
evoked responses vary with different values for the mean vascular transit time (z) and
Windkessel parameter (5). The magnitudes of the responses are normalized to the peak
response for each measurement type in order to facilitate cross-modality comparisons. Panel
C shows the lower bounds on estimated parameter precision, which can be obtained from the
full and reduced model sets (as described in the text). Since the values for the parameter
minimum error were normalized to the maximum response contrast per modality, the lower
bound of the parameter uncertainty can be estimated for a given contrast-to-noise ratio (CNR)
by dividing by the CNR value (e.g. with a CNR of 20:1, the Windkessel parameter, 3, can be
estimated with a maximum precision of around +0.2 StdErr from the BOLD and ASL data).
The degrees-of-freedom (dof) for each model is given in the legend. These results are shown
for a linearization about the parameter set from the model fit of the multimodal data shown in
Table 4.
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Figure 4. Examination of global parameter identifiability

In Panel A, we show the results from 350 simulations of the model. fMRI and NIRS
measurements were simulated at a contrast-to-noise ratio of 10:1. The vascular parameters
(refer to Table 3) were estimated from the multimodal (optical and fMRI), fMRI, or optical
data sets. For each plot, the simulated and recovered values are shown (black- multimodal;
red- fMRI; blue- NIRS). The solid and dotted lines show a linear regression and 95%
confidence bounds. The R-squared (R?) values for these regressions are shown within each
plot. In Panel B, we examine the cross-talk between each parameter by looking at the cross-
correlation (Pearson correlation coefficients) of the error in the parameter (normalized error =

[recovered-simulated]/simulated).
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Figure 5. Model Fit of Empirical Data

The vascular model was independently fit to the multimodal (Panel A), pulsed ASL and BOLD
measurements (Panel B), and NIRS measurements (Panel C). Based on the parameters
estimated from the model fit to one data set (i.e. fMRI alone), the remaining data (i.e. NIRS)
can be predicted. These model predictions are presented for the fMRI and optical data in Rows
B and C. The error bars on the data measurements (open circles) show the standard error from
the group average of the five subjects. The model predictions and 75% confidence bounds are
shown as solid and dashed lines in each plot. The data from 0-9 seconds was used in the model
fitting procedure.
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Figure 6. Parameter accuracy

The mean and uncertainties in the parameter estimates are illustrated using box and whisker
plots to show the median (vertical line), 50% (box edges), and 75% (whiskers) percentile
confidence bounds for each estimated parameter for the model fits to the group averaged data
(N=5). The results are shown for the model fits to the fMRI-BOLD/ASL data alone, optical
NIRS data alone; and multimodal BOLD/ASL/NIRS data sets. The open circles represent the
fitted model parameters from variation of the initial starting position of the LM algorithm used
in the analysis of the group averaged data (from the all possible variations of the extrema of
the parameter bounds given in table 3). In addition, the dotted vertical lines show the mean
estimates for each of the five individual subjects fit using the same model.
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Figure 7. Dynamic CMRO> and arterial diameter changes
The dynamic changes in arterial diameter (inversely related to resistance changes) and
CMRO; are shown in Panels A and C respectively. The solid and dotted lines show the most
probable and 75% confidence intervals for the time-courses estimated from the multimodal,
fMRI, and optical data sets. Panel B shows the histogram of the ratio of maximum flow to
volume changes recovered from the Markov Chain Monte Carlo process. In Panel D, the flow-
consumption ratio is shown for the three data sets.
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Table 1

Summary of Windkessel Model

The temporal dynamics of cerebral vascular changes can be approximated based
on the fluid mechanics of a compliant Windkessel compartment. In response to
changes in vascular tone (described as a sum of two independent non-linear
gamma-variant temporal basis functions), the flow, volume, and pressure changes
are modeled for each of the three vascular compartments (n €{Artery, Cappilary,
Vein}). The symbols used in the equations above are P-pressure; F-blood flow; V-
blood volume; C-capacitance; R-vascular resistance; and t- time. The subscript ‘0’
indicates the baseline value. In the arterial resistance equation, H(t) is the heavy
side hat function. Further details of this model have been presented in (Huppert et
al. 2007).
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Table 2

Summary of Oxygen Transport Model

Changes in blood and tissue oxygen content are defined by a set of differential
equations shown in the table above derived from the mass-balance of oxygen
delivered via blood flow and consumed via CMRO; in the tissue (Huppert et al.
2007). The symbols used in the equations above are F- flow; V- volume; cNOo-
oxygen content; syO,-blood oxygen saturation fraction; Ky-vascular permeability
rate constant; HbR/HbO,- deoxy/oxyhemoglobin per volume tissue; Hy-Hufner
number (1.39 mL/gm Hb (Habler and Messmer 1997)); HGB- hemoglobin content
of blood (~12-15gm Hb/dL (Habler and Messmer 1997)) and t- time. The subscript
‘0’ indicates the baseline value. In the CMRO5 equation, H(t) is the heavy side hat

function.
CMRO, State
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TZ= A CMRO, o H(tfro) o % a1 ( UZO) el @
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Table 3

Description of Parameters in Model
This table shows the parameters used in the model described in the text.
Physiological ranges are used to set the upper and lower bounds for each parameter
used in the fitting procedure as determined from the provided citations. The
baseline oxygen saturation of each vascular compartment was estimated in the full
multimodal model only.

Page 30

Symbol Description Physiological Range Citation
Maximum change arterial
AR Amax oSSt [0-90] [-90-0] % -
Arterial Resistance temporal Time to onset of resistance *
basis P Tonset change [0-6] s [0-6] s -
Width of temporal resistance
oA change [0-8] | [0-8] s -
Maximum change in relative
A CMRO 50 CMR%Z [0-50] % -
- Time to onset of CMRO
CMRO, temporal basis T onset change 2 [0-4] s -
. Width of temporal CMRO, [0-8] s _
change
. . . i (Boas et al
R A (0) Initial arterial resistance [20-90] % 2003)
- Mandeville
[} Windkessel vascular reserve [1.1-5] (
Vascular Model Parameters et al 1998b)
- . (Itoetal.
T Vascular transit time [0.5-4] s 2005)
Tpial Pial venous transit time [0-4] s -
$,0, Baseline arterial saturation [95-100] %
Oxygen Saturation S.0, Baseline capillary saturation [60-90] % (He;rggg)et al
S,0, Baseline venous saturation [55-89] %™
[HbT] 4 Total baseline blood volume [40-140] uM (Ta(:rrége(z)llll)et
NIRS lead field '
O pial Pial vascular sensitivity [0-1] --
Baseline vascular volume (ltoetal.
Vo fraction [1-10] % 2005)
BOLD lead field
Intrinsic ratio of intra/extra-
€ [1-5] -

vascular signal

*
Onset time for the arterial contraction response is defined as the lag time after the onset of the dilation response.

Fk

Capillary and venous oxygen saturations are defined by the change from the previous compartment to ensure that SAO2> SC0O2>Sy02.
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