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Functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-
infrared spectroscopy (NIRS) can be used to isolate an evoked response to a stimulus from significant
background physiological fluctuations. Data analysis approaches typically use averaging or linear regres-
sion to remove this physiological baseline with varying degrees of success. Biophysical model-based anal-
ysis of the functional hemodynamic response has also been advanced previously with the Balloon and
Windkessel models. In the present work, a biophysical model of systemic and cerebral circulation and
L . gas exchange is applied to resting state NIRS neuroimaging data from 10 human subjects. The model fur-
Physiological modeling . . . . . .
Dynamic cerebral autoregulation ther includes dynamic cerebra.l aqtoregqlatlon. which modulates t.he. cerebral arte.rlole.compllance to
NIRS control cerebral blood flow. This biophysical model allows for prediction, from noninvasive blood pres-
FMRI sure measurements, of the background hemodynamic fluctuations in the systemic and cerebral circula-
Balloon model tions. Significantly higher correlations with the NIRS data were found using the biophysical model
Windkessel predictions compared to blood pressure regression and compared to transfer function analysis (multifac-
tor ANOVA, p < 0.0001). This finding supports the further development and use of biophysical models for
removing baseline activity in functional neuroimaging analysis. Future extensions of this work could
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model changes in cerebrovascular physiology that occur during development, aging, and disease.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Models of blood circulation and gas exchange in the human
body have advanced steadily over the past decade. System models
in the literature span pulmonary [1], systemic [2,3] and cerebral
circulations [4-6] with inclusion of a wide range of regulatory
physiology. The application focus for these models has been on
predicting the dynamics of medically relevant events like carotid
artery compression, hypotension, hypercapnia, and thigh cuff
deflation. Significant progress has also been made in the develop-
ment of a cerebral autoregulation index [7] that can be used to
grade autoregulatory function from noninvasively measured blood
pressure and cerebral circulation [8] with applications in, for
example, hypertension, stroke, and carotid sinus syndrome [9].
The aim of the present work is to recast a nonlinear dynamic phys-
iological model in the context of neuroimaging. The present ap-
proach differs from prior work in that the model dynamics are
propagated through the relevant measurement biophysics for di-
rect comparison with functional neuroimaging data. This approach
will support the recognized need to evaluate model applicability in

* Corresponding author. Tel.: +1 603 646 1311; fax: +1 603 646 3856.
E-mail address: Solomon.G.Diamond@Dartmouth.edu (S.G. Diamond).

0025-5564/$ - see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.mbs.2009.05.002

the clinical environment and to validate the reproducibility and
normal ranges of model parameters [10].

Previous applications of physiological models in neuroimaging
have largely focused on describing the functional hemodynamic
response to brain activity [11-14]. A great deal of this interest
stems from the Balloon [15] and Windkessel models [16], which
have helped to formulate physiologically-based interpretations of
fMRI and optical brain imaging data. A limitation of these previous
models is that they do not include the effects of cerebral autoreg-
ulation, which affects cerebral blood flow. This is important in neu-
roimaging because the resting state blood flow can confound the
interpretation of blood oxygenation level-dependent (BOLD) fMRI
[17]. More recent studies offer sophisticated models for the rela-
tionship of cerebral blood flow to metabolic biochemistry and vas-
cular smooth muscle [18] and the effects of cerebral autoregulation
on neural activation [19]. However, these recent studies used only
qualitative comparisons with measurements from the human
brain.

The present work focuses on capturing the temporal dynamics
of spontaneous fluctuations in cerebral hemodynamics. These
physiological fluctuations are apparent in near-infrared spectros-
copy (NIRS) [20] and in fMRI [21], where they are usually consid-
ered signal clutter or noise. Previous studies have aimed to
remove this signal clutter in fMRI with, for example, principal com-
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ponent analysis (PCA) and independent component analysis (ICA)
[22], autoregressive models [21], adaptive filters [23], and with
Kalman filter in NIRS [24]. Prior neuroimaging studies have not at-
tempted to remove these fluctuations from the data with a physi-
ological model.

An additional motivation to this work, besides reducing signal
clutter in brain activation studies, is that model-based assessment
of baseline cerebral physiology could serve as biomarkers of cer-
tain cerebrovascular pathologies such as impaired dynamic cere-
bral autoregulation (CA). A current technology for CA assessment
is transcranial Doppler ultrasonography (TCD), which can measure
cerebral blood flow velocity in certain large intracranial vessels but
cannot perform imaging [25]. CA assessment with TCD has been
explored in hypertension [26], severe carotid stenosis [27], verte-
bral artery disease [28], critically ill infants [29], and acute ische-
mic stroke [30]. Modeling the CA response in fMRI and NIRS data
is an exciting new frontier. Some of the parameters in the present
model may also be altered during the progression of neurodegera-
tive diseases. For example, changes in vascular stiffness in patients
with Alzheimer’s disease or vascular dementia [31,32] could be
represented in the model as a decreased compliance parameter.
Another example is diabetes mellitus, which is known to directly
affect cerebral vasculature and to cause cerebral blood flow (CBF)
abnormalities and complications of the cerebral circulation
[33,34]. The detail included in the proposed model would allow
for testing of specific hypotheses about the changes in physiology
that accompany disease.

The present study builds on a previously published model of
cerebral circulation [2] and a model of systemic circulation [4].
Features have been added that account for the affinity of CO, with
hemoglobin, nonlinear resistances, Windkessel compliances, and
initial parameter values that are derived from steady-state rela-
tionships. The model is composed of seven systemic compart-
ments, five cerebral compartments, and two neck compartments.
These numbers of compartments were chosen to enable the simu-
lated NIRS data to reflect the heterogeneous vascular composition
of the scalp and the complex vascular structure of the brain where
there are large arteries and veins on the surface, and then arteriolar
and venous branches diving down into capillary beds in the cortex.
As the modeled blood circulates through each chamber, the hemo-
dynamics are successively filtered into the dynamics that comprise
the NIRS data. The 48 system equations for the complete model are
derived in this manuscript to make explicit all the necessary infor-
mation that is needed to reproduce this work. This model will be
referred to as SimCVR for Simulated Cerebro-Vascular Response.

Additional features were added to SimCVR that estimate NIRS
time-series data from the circulation dynamics so that the model
output can be directly compared with measurements from NIRS
such as the CW5 optical imager [20] used in the present study.
After describing the SImCVR model, it is used to predict the resting
state fluctuations in NIRS data at 830 and 690 nm from 10 scalp
locations on 10 different subjects. NIRS predictions were generated
by driving the SimCVR model with finger-cuff pressure variations
and then estimating the blood volume fraction under each NIRS
probe. The SimCVR predictions had higher coefficient of determi-
nation R? values compared to direct blood pressure regression
and compared to transfer function analysis. These results suggest
that physiological models may help account for baseline physiol-
ogy in functional brain imaging experiments and ultimately lead
to physiological model-based data interpretation.

2. Methods

SimCVR consists of coupled fluid flow and gas exchange sys-
tems. The fluid flow system is a circuit-analog of nonlinear resis-

tors and capacitors (Fig. 1A) that provide for resistance to fluid
flow and compliance of the blood vessels. The circuit can be di-
vided into systemic s and cerebral b regions. The systemic region
accounts for blood circulation in the body, excluding the cerebral
and pulmonary circulations. There are seven lumped vascular
chambers in the systemic region representing the large arteries
la, small arteries sa, arterioles a, capillaries c, venules ¢, small veins
sv, and large veins lv. The cerebral circulation is connected through
the neck arteries na and neck veins nv. The cerebral model contains
five vascular chambers representing pial arteries pa, arterioles a,
capillaries c, venules v, and pial veins pv. The cerebral region also
accounts for cerebrospinal (CSF) circulation f and intracranial ic
pressure. The gas exchange system (Fig. 1B) accounts for the partial
pressures of O, and CO, blood gases g in all of the vascular cham-
bers and, additionally, chambers representing CSF, interstitial fluid
(ISF), and intracellular fluid (ICF). The gas transport accounts for
convection with the blood flow between vascular chambers and
diffusion from the capillaries to the metabolic action in ICF.

One of the significant challenges with lumped parameter mod-
eling in physiology is parameter estimation. This issue has been
addressed in the circulation model by requiring that the user spec-
ify only a subset of the parameters such as the steady-state vol-
umes and pressures. Remaining parameters such as resistances
and compliances are calculated based on steady-state relation-
ships. Similar parameter constraints are exploited in the gas ex-
change system where the user must specify the steady-state
blood gas concentrations in the fluid chambers but the diffusion
constants are calculated. Exploiting the steady-state parameter
relationships makes the task of lumped parameter estimation eas-
ier because established physiological quantities such as the steady-
state pressure drops through the circulatory system are specified
and abstract lumped parameters like effective lumped compliance
are calculated. The parameter calculation methodology is detailed
in Appendix: Parameter relationships at steady state.

In the following model description, the governing state equa-
tions are presented in a format that can be implemented directly
in an ordinary differential equation (ODE) solver such as the
ODE113 function in MATLAB® (MathWorks, Inc., Natick, MA).

2.1. Systemic fluid flow system

The circulatory model assumes that the pressure-volume rela-
tionship in each chamber is governed by compliance and that the
pressure drop between chambers and the vascular resistance
determines the blood flow. Following the nomenclature defined
in Table 1, the blood volume V, vascular resistance R, and blood
flow q in vasculature chambers j = la, sa, sv, Iv and k = sq, a, lv, ra,
are given by

Vsj - Vs.j,us = PS-J'CS-J?O7 (1)
Vijo)’
Ryj = Rs.j,O( VJ‘-O> 7 (2)
s
and
P — P,
q; = SJRSJ, S~’<A 3)

Eq. (1) specifies the compliance constant C;; in the systemic s,
vascular chamber j, as the ratio of volume V;; to transmural pres-
sure Pg;, which is represented in this electrical analog as a capacitor
(Fig. 1A). The unstressed volume V;;, is the residual volume in the
vessel that is present when the transmural pressure falls to zero.
The unstressed volume is assumed to be constant and has been ini-
tialized as a fraction F;, of the initial volume

Vsj‘us = Fs.usvsj‘o- (4)
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Fig. 1. SimCVR model for (A) blood circulation and (B) gas exchange. The nomenclature is defined in Tables 1 and 2.
Table 1 resistance R,; is inversely proportional to vessel diameter to the

Subscript nomenclature.

s Systemic region la Large artery i Preceding chamber

b Cerebral region sa  Small artery j Vascular chamber

r Systemic or cerebral a  Arteriole k Subsequent chamber

HbO Oxyhemoglobin ¢ Capillary L Capillary-ISF interface

HbR  Deoxyhemoglobin v Venule M  ISF-ICF interface

HbT Total hemoglobin sv Small vein N CSF-ISF interface

h HbO or HbR Iv Large vein d Diffusion interface

0, Oxygen na Neck artery fi CSF formation

CO, Carbon dioxide nv  Neck vein f CSF absorption

g Gas species O, or pa Pial artery aut Autoregulation

CO,

CSF  Cerebrospinal fluid pv  Pial vein w;  Lower compliance
bound

ISF  Interstitial fluid ra  Right atrium w,  Upper compliance
bound

ICF  Intracellular fluid ic  Intracranial bv  Blood volume

sp Set point 0 Initial us  Unstressed volume

condition

Following [35], the compliance of the collapsible veins is in-
creased 20-fold when the transmural pressure P;; is negative. Eq.
(2) follows from Poiseuille’s law for laminar flow in a tube in which

forth power. Eq. (3) states that blood flow gs; out of chamber j
equals the pressure drop from the current chamber j to the subse-
quent chamber k divided by the resistance Rs;.

Calculating the system response with an ODE solver requires
state equations that relate the time derivatives of the pressure
% and volume dZEJ to the pressure Py; and volume V;; state vari-
ables. The state equations for i = la, v, sv, and j = sq, sv, lv are ob-
tained by solving Eq. (1) for Ps; and then taking the time derivative
dpy; 1 dVy

dt  Cgjo dt’ )

where the change in volume is the difference between blood out-
flow g; and inflow qs;

dvs;
d;J =({s;i — (qsj-

(6)

The systemic arteriole, capillary and venule compartments in-
clude Windkessel compliance to appropriately model nonlinear
vascular properties [16]. Using the notational substitutions i = sa,
a,c;j=a,c v, and k = c, v, sv, the compliance is
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A1
P‘ Psj
CsJ:Csj,o<PS?JO> b (7)

where f; is the vascular reserve of the jth compartment in the sys-
temic s region and

Vsj = PsjCs; 8)

is the pressure-volume relationship with time-varying compliance
Cs,;. The equations for resistance and flow are the same as Egs. (2)
and (3), respectively. The state equations for the Windkessel com-
partments are obtained from the time derivative of Eq. (8)

dvs; o dCs; dPg; dPs;
“ac ~Papy a9 ®
where

dcs; Gy (1 <P>/_2

= — -1 J . 10

dPSJ PSJ-O (ﬂsj > Ps,j.O (10)
Solving Eq. (9) for the derivative of pressure yields

dPs;  dV; Vs; dCsj\ !

i~ dr \& Csj dPs;) - an

2.2. Specifying inputs to the systemic system

The state equation for chamber la is driven by the derivative of
the blood pressure in the large artery
dPs la dPs la,input
— 12

T (12)
because the input is directly connected to the large artery without
resistance in the circuit model (Fig. 1A). The time-varying pressure
input Py i inpue Mmust be specified by the user. An alternative to using
the large artery pressure input of Eq. (12) is to supply the derivative
of blood pressure in the small artery sa instead of the large artery la.
The advantage of specifying d‘;% is that it can be used to drive the
model with the pressure variations measured in the peripheral cir-
culation (e.g. with a finger cuff). However, the following additional
calculations are required to compute the unknown value of P,
from a known value of Psg,. First Egs. (1)-(3) are combined with
j=Ila and k = sa to obtain

Psja — Ps,
Asio = =2 v = 7 (13)
s,la,0
RS'IG'O (Ps.lucs m.o)

Next Egs. (5) and (6) are combined with j = sa, i = la to obtain

dPs,sa _ Gsja — Gssa
dt Cs,sa,O '

Egs. (13) and (14) are then combined and simplified into a cubic

(14)

equation
Pila - <P5,Sa -2 Vs,la.lls) Pilu - Vs‘la,us 2& - Vsz.la‘us Ps.la+
Cs.la.O Cs.la.O Cs.la,O
V2o (dP. PysV2,
.y o s la, 550~ 00+ Qoo + SV slaus | 0, (15)
e C?.la,O de e RS-lﬂ-Ovila,O

where unknown value of P, is only real positive root of Eq. (15).
2.3. Cerebral fluid flow system

The cerebral circulation model connects to the systemic circula-
tion model through vascular compartments of the neck. The neck
artery na is assumed to be directly coupled to the systemic large
artery la such that their pressures are matched

Pb‘na = Ps,la- (16)

The equations for volume, resistance, and flow for the arteries
and veins of the neck have the same form as the Egs. (1)-(3) with
the exchange of b subscripts for s and the substitutions j = na, nv;,
and k = pa, lv. The state equation for the neck vein nv is
de,nu _ qb‘pv + qb_f2 - Qb.nv7 (17)

dt Cb.nv,O
and is derived in the same manner as Egs. (5) and (6) where gy, is
CSF absorption into the neck vein (see Fig. 1A). The equations for
resistance Rp; and flow q,; are the same as Egs. (2) and (3) with
s=band k=a, nv.

Above the neck, the description of the cerebral compartments
can be grouped into the cerebral capillary and venule, which are
assumed to have Windkessel compliance, and the pial arteries
and pial veins, which are assumed to have constant compliance.
This distinction is made because prior studies of the Windkessel
model have focused on the microvasculature [36,37] and not on
larger vessels. The cerebral arteriole compliance is treated un-
iquely due to its involvement in dynamic cerebral autoregulation.

Accounting for the intracranial ic pressure and linear compli-
ance Cpjo of the pial arteries pa and pial veins pv, the volume for
j=pa, pvis
Vij = Vbjus = (Poj — Ppic)Cojo- (18)

The state equations for the pial vessels are obtained from Eq. (5)
with s =b; i=na, v, and j = pa, pv. The cerebral capillary c and ve-
nule v compartments include Windkessel compliance Cp; and ac-
count for the intracranial pressure

Vij = (Pyj — Ppic)Co,, (19)
where j = ¢, v and

R
Ppj — Phc >”b1

20
Pyjo — Ppico (20)

Cpj = CbJ,O(

The state equation for Py, derived from Egs. (19) and (20), fur-
ther assumes that the intracranial pressure P,;c may be time
varying

Wi; _ p _p, (Ao APy | dCyy P
de — VT TMONdP,; Tdt T dPy  dt

dP,; dPyic
where

1

4G Gy L ( Pyj — Pyic )”b-f ’ (22)
dPyj  Pojo — Phico \ By; Pyjo — Ppico
and
dCbJ o dCbJ
dPpic — dPy;’ (23)

Combining and solving Egs. (21) and (23) for the derivative of
pressure results in
dPyy _ iy (0 Viy 4Gy P

P Cyj dPy, e

dat — dt 24)
The expressions for resistance Rpj flow gp; and the volume
derivatives % are obtained from Egs. (2), (3) and (6) with s=b;
i=a,c;j=c v; and k = v, pv. An expression for the time derivative
of intracranial pressure ‘“’d—"t will be introduced after describing the
rest of the cerebral vascular and fluid compartments.
The remaining vascular compartment to be described is the

cerebral arteriole. In our model, dynamic cerebral autoregulation
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of CBF operates via feedback to the cerebral arteriole compliance.
This autoregulation-compliance model will first be described and
then incorporated into the arteriole state equations.

The CBF set point g5, and autoregulation gain Kg, on this feed-
back loop are influenced by the partial pressure of CO, in the ISF.
The following system equations that govern the CO, effects are
simplified versions of those presented in [4] because data simula-
tions were found to operate in a linear regime of the more complex
equations. The difference from baseline ISF CO, is expressed as an
autoregulation set point fraction

Fauesp = Pb.COZ,II;?F - Pb,COZ,ISF,O (25)
b,C0, ISF,0

which correlates positively with the CBF set point

Tosp = Apo(1 + Faursp), (26)

and negatively correlates with the autoregulation reactivity gain

Kaut = Kaur,O(‘1 - Faut,sp)- (27)

The autoregulation state variable x4, is an auxiliary variable
that will determine the arteriole compliance changes a few steps
later. The dynamics of X 4, are governed by its state equation

dxb.aut _ Kaut qb,a - qb,sp (28)
dt Taut qb.sp .

The variable cerebral arteriole compliance operates on a non-
symmetric sigmoid with the bounds Gy, and curvatures kj

Cb.w = Cb wyq }

' when X qr < 0, 29a
kb,p _ Cb,w] /2 b,aut ( )
Cb.w = Cb wy } .

' otherwise. 29b
kpp = Couw,/2 (29b)

The arteriole compliance is then described by the sigmoid curve

—X
Cha = (Cb.a,o = Cow + (Cha0 + Chw) €XP <—k:"”‘)>
p

[ ()

where exp (-) is the exponential function. Thus if from steady state,
the cerebral arteriole flow g, falls below the CBF set point gy sp, the
autoregulation state x;, 4, Will become negative. This will cause the
arteriole compliance G 4 to increase towards Cp 40 + Cp ., , Which will
dilate the arterioles and increase CBF. In the opposite scenario, Cp, , de-
creases towards Cp a0 — Cpw,, Which constricts the arterioles and de-
creases CBF.

The arteriole compliance can now be incorporated into the arte-
riole state equations. The equations for cerebral arteriole volume
Vpq resistance Ry 4, and flow g, 4 are the same as Egs. (1)-(3) with
s=b; j=a; and k = c. The arteriole state equation is obtained from
solving for P, , in Eq. (19) with j = a, and then taking the time deriv-
ative to obtain
dPpq  Qvpa — bf, —Gba  Vba dCha | dPpc

a Coa T, dt e G1)

where gy, is CSF formation from the arteriole (see Fig. 1A), and the
compliance derivative is

dcb,a _ 2Cb,w —Xbaut —Xb,aut - dxb.aut
= () (eew (507) %
dcb,a,input
+ g (32)

The compliance input W has been added to Eq. (32) to per-
mit inclusion of an arteriolar compliance response to neural stim-
ulus [14], which would be superimposed on the regulatory

physiology. When this input is non-zero, the arteriole compliance
Cp, must be treated as a state variable that is solved by integration
and Eq. (30) would not be used.

In addition to the time-varying fluid flow in the cerebral vascu-
lar compartments, the CSF volume in the intracranial space also
varies in time because of continuous formation by the choroid
plexus and absorption by the arachnoid villi [38]. Following [4],
the formation rate depends on the pressure gradient

_ Pyq — Pb‘ic

= 33
b f, Ros,o (33)
and the absorption rate is unidirectional
Qbg, = Poie = Pono \ypen py > Py, and (34a)
Rop,0
qss, = 0 otherwise. (34b)

The state equation for CSF accounts for the difference between
the rates of formation and absorption

AV csr
dr = b5 — Gosy- (35)

Now that all of the time-varying intracranial fluid volumes in
the model are described, the intracranial pressure Py ;. can be ex-
pressed in terms of the intracranial compliance Cp;. and volume
Vb,ic as

Pyic = =2 (36)

where the intracranial volume is the sum of all intracranial volumes
Viie = Vipa + Via + Voe + Voo + Vipy + Viese + Visr
+ Vb.lCF + Vb,tissuw (37)

and the interstitial fluid Vs, intracellular fluid Vjcr, and tissue
volume Vj sissue in the intracranial cavity are assumed to be known
constants. Given the definition of V. in Eq. (37), the graphical rep-
resentation of intracranial compliance Cp ;. as a single compartment
in Fig. 1A is only symbolic. The state equation for intracranial vol-
ume Vj ;. is

dVy;
dl;.,lc = qpna — 9bpr — b, (38)

where the inflow through the neck artery gy, 4, outflow through the
neck vein gy, and CSF absorption g, are the only net effects on
the volumes that comprise the intracranial volume V. in Eq. (37).

The remaining unknown is the intracranial compliance G ;.. In
[4], the intracranial compliance is defined as inversely proportional
to the intracranial pressure. Substituting this inverse proportional-
ity into Eq. (36), however, results in a constant intracranial volume,
which implies zero intracranial compliance. Given this inconsis-
tency, we opted instead to use the Windkessel compliance of Eq.
(7) with s=b and j = ic. Rearranging Eq. (7) illustrates that larger
values of Bp; result in a compliance expression that is nearly
equivalent to the one in [4] but the algebraic cancelation of Py ;.
is avoided

Ppic—1

Ppico\ Poic
Chic = Chico ( Iszco> " 39)

The intracranial pressure state equations that follow from Egs.
(36) and (39) are the same as Eqgs. (10) and (11) with s = b and j = ic.

A value of fp; can be chosen based Monro-Kellie doctrine
[39,40], which states that the cranium is rigid and any volume
change in one of three constituents (blood, CSF, and brain tissue)
must be compensated by change in another constituent, which im-
plies that g is infinitely large. Monro-Kellie also permits, how-
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ever, the ability of the CSF to be displaced into the spinal canal, and
some compliance in the falx cerebri between the hemispheres and
the tentorium between the hemispheres and the cerebellum,
which implies that gp;. is not infinite. We have, for the moment,
set Bpic = 5 based on the empirical observation that this value pre-
dicts NIRS data reasonably well and we leave further exploration of
this parameter to future studies that include intracranial pressure
recordings.

2.4. Systemic gas exchange

The systemic gas exchange model tracks the bound and un-
bound O, and CO, in the vascular chambers and tissue compart-
ments and accounts for concentration changes that occur from
fluid flow, diffusion and cellular metabolism. First, some general
expressions for the calculation of blood gas concentration are ex-
plained and then applied to the specific chambers in the systemic
system. Next, the state equations are obtained for the partial pres-
sure of each gas species and these gas exchange state equations are
coupled to the circulatory state equations that were already
presented.

In general, the total oxygen concentration Co, in blood is the
sum of bound and unbound O,

COZ = Cbound.Oz + Cunbound.Oz' 4o

The bound O, concentration depends on the percent oxygen
saturation So,, the hemoglobin concentration Mpuprpiood £aS CON-
stant R, standard temperature Ts;p, and pressure Pspp

So, 4RT
Chound.0, = 1 820 PS;TP MHbr blood- (41)

The percent oxygen saturation Sp, can be calculated from the
partial pressure of oxygen Py, using an analytic hemoglobin disso-
ciation curve which depends on temperature T and pH [41] (in-
cluded for convenience in Appendix Blood oxygen). The unbound
0, concentration simply depends on the partial pressure of oxygen
Py, and the gas solubility oo,

Cunbound,02 = POZ Qo, - (42)

In the derivation of state equations that follows, it will be nec-
essary to convert oxygen concentration Co, state equations into
oxygen partial pressure Po, state equations. This conversion can
be accomplished using the relation

dCo,, dCo, dPs,

dt ~ dP,, dt’ (43)
where
dC dSo, 4RT

% = 2202 2 Mt biood + o, (44)

dPoz N dPoz 100P5'[p

is derived from Eqs. (40)-(42) and is referred to as an effective sol-
ubility &0, since it accounts for both bound and unbound oxygen [2]

o, = dpoz . (45)

The general expression for total CO, concentration in blood is
similar to the expression for oxygen in that both bound and un-
bound gas must be considered

CC02 = Cbound,COZ + Cunbaund.COZ- (46)

The bound and unbound CO, concentrations depend on the par-
tial pressure of carbon dioxide Pco,, percent oxygen saturation So,,
hematocrit Hct, gas solubility o.co,, temperature T and pH [42] (see
Blood carbon dioxide in Appendix). Also similar to the treatment of
oxygen is the need for an effective solubility

~ . dCcoz
Oco, = dpcoz . (47)

The state equations for the systemic gas exchange can now be
described beginning with the input to the partial pressure of gas-
eous species g=0,, CO, to the systemic arterioles Psg4g4, which is
specified as an input in the form of Eq. (12). The blood gas inputs
effectively occur at the arteriole chamber because gas exchange
is assumed not to occur in any of the arterial chambers. The user
may also supply inputs that change the systemic metabolic rates
Q, in the form of Eq. (12) to capture, for example, the effects of
a stimulant drug. Moving from the arteriole a chamber to the cap-
illary ¢ chamber will require accounting for the systemic s blood
gas concentration Csg for g =0,, CO,

Vs,g.c
Vs‘c ’

Csge = (48)
where Vg is the gas volume and V; is the blood volume. Differen-
tiating Eq. (48) yields

dng c dvsg c 1 ng c dvs c

- Eh ot et Tt 4

dt dt Vs, Vﬁc dt (49)
where the derivative of gas volume V4 depends on the gas inflow
from the arteriole, outflow from the capillary and diffusion with ISF

dv.
8¢ Cs.g,cqs‘c + Ds.L.g (Ps.g,ISF - Psg.c)v (50)

dt = ng,aqs.a -
where Dy, ¢ is the diffusion constant, P, is the partial pressure in
the capillary, and Psg s is the partial pressure in the ISF. The state
equation in the capillary is now obtained by combining Eqgs. (48)-
(50) and dividing by the effective solubility [Eqgs. (45) or (47) as
appropriate] to arrive at partial pressure in terms of gas species g

dP. 1 dv
dsig,c = m (Cs,g.aqs,a - Cs.g,cqs,c - ng,c TSC + Ds.L.g (Ps.g.ISF - Psg,c)) .
(51)
A similar state equation governs the venule » chamber
dP;g 1 dvs,
th 2 = m <Cs.,g,cqs.c = Csgwlsy — Csgo %) (52)

The state equation in the intracellular chamber includes the ef-
fects of metabolism Qs and uses the solubility for unbound gas o,
only because no hemoglobin is present

dpP sgICF 1

dt Vo (Dsmg(Psgise — Psgicr) — Qsg)- (53)

A similar expression is use for the interstitial compartment

dP 5.8.ISF _ 1
dt Vsspotlg

(Ds,Mg (Ps,gAICF - Ps,g,ISF) + Ds.L,g (Ps,g,c - Ps.g,ISF))-

(54)

2.5. Cerebral gas exchange

Following the same procedure as with the systemic compart-
ments, preliminary calculations are carried out to obtain the cerebral
blood gas concentration C,g; and effective solubility &,g;. User in-
puts of the cerebral metabolic rates can model changing metabolic
demands
Qs - w. (55)
dt dt

The state equations for the cerebral gas exchange system follow
a derivation similar that for Eq. (51). Where needed, additional
terms account for gas transport with CSF formation ¢q,; and
absorption q,,. The following state equations result for the
arteriole
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aPygq 1 avy,
dtg = m (Cbg,a%.pa — Chgadpa — dbs, Prga% — Chga Ta>
(56)
capillary
dPyyg, 1 dvy,
dtgc = m (Cbg,aqb_a - Cbg,cCIb,c - Cb,g.c TC
+ Dy g (Pogisr — Pb,g.c)) ) (57)
venule
dPyg , 1 dv,,
dfg = m <Cb‘g.cqb,c —Chgolpy — Cog o 71})7 (58)
cerebrospinal fluid
dP, 1
th'CSF = Vs csr0lg (ag(Qbf] Pyga— Apy, Pygcse) + Dy g (Pogise — Pogcsr)),
(39)
interstitial
dP, 1
g‘i‘ISF = m (Dpg(Ppgc — Pogisr) + Domg(Pogick — Pogisr)
+ Dyng(Pogese — Pogisr)), (60)
and intracellular compartments
APy g jcr 1
d_i = Vb,ICFOfg (Db,M,g(Pb,g,ISF - Pbg,lCF) - Qb‘g)- (61)

The lumped parameter model of circulation and gas exchange is
now fully described. Additional steps are required, however, to re-
late the state variables in the lumped model such as blood volume
and oxygen saturation in individual vascular chambers to mea-
surements that are made with NIRS from spatially distributed
physical tissue.

2.6. Hemoglobin concentration changes

The purpose of this section is to relate the state variables in the
lumped parameter model to spatially distributed concentration
changes in oxy- and deoxyhemoglobin in tissue. Establishing this
relationship requires knowledge about the local tissue such as
the blood volume fraction, arterial blood volume fraction and so
forth. Given the composition of vascular chambers in the tissue
and the temporal dynamics in oxy- and deoxyhemoglobin in those
chambers, it is possible to simulate NIRS measurements and the fi-
nal goal of the model will be accomplished. The following four
assumptions are used to relate the state variables of the SimCVR
model to the spatially distributed hemodynamics that are mea-
sured by NIRS.

The first assumption is that the concentration of hemoglobin in
the blood Myprpiood is constant. This assumption simplifies the con-
version of time-varying blood oxygen saturation S,,,; in the jth
vascular chamber to time-varying concentration of oxyhemoglobin

S .
M; bpoj = %MHbT.blood (62)
and deoxyhemoglobin

Se0,i
M morj = (1 - 188’>MHbT,bluud7 (63)

where for the systemic region (r = s) we have j =laq, sq, q, c, v, sv, lv,
and for the cerebral region (r=b), j = pa, a,c,v, pv. Relating blood
oxygen saturation to hemoglobin concentration captures the
dynamics of the systemic and cerebral gas exchange models.

Next the blood volume dynamics from the circulation model are
incorporated with the introduction of a second assumption, which
is that a fractional change in blood volume causes a fractional
change in effective hemoglobin concentration. Specifically, the
fractional volume in the jth chamber in the systemic or cerebral re-
gion (r =s,b) is the state variable V;; divided by the initial volume
Vijo- The effective hemoglobin concentration M,,h j for h=HbO,
HbR is then
Vi

LM, (64)

Mr‘h.j = v 0
rj,

where M, ; is the hemoglobin concentration from Egs. (62) or (63)
as appropriate. The effective hemoglobin concentration M, j now
includes the dynamics from the lumped gas exchange and lumped
circulatory models but does not yet reflect the composition of the
spatially distributed tissues.

Third and forth assumptions are now needed to incorporate tis-
sue composition and complete the relationship between lumped
parameters and distributed tissue properties in a local region.
The third assumption is that an initial blood volume fraction F;p,
can be used as a weighting factor in the systemic and cerebral re-
gions (r=s, b) to account for the local blood-tissue composition.
The forth assumption is that initial volume fractions of the vascular
chambers F;j can account for the relative composition of the vascu-
lar chambers that comprises the local blood content of the tissue.
Combining the third and forth assumptions relates the effective
hemoglobin concentration in the vascular chambers M,_h j to the
spatially distributed hemoglobin concentration in the tissue

Mr.h = Fr,bz/ ZFrer.hjﬁ (65)
J

such that M, approximates the time-varying distributed concen-
tration of hemoglobin species h in the systemic and cerebral regions
(r=s, b). Since the volume fractions F are held constant, all the tem-
poral variation in I\N/I,‘h comes from dynamics in blood volume V;;
and blood oxygen saturation S;,; as computed by the lumped
parameter components of the SimCVR model.

2.7. Simulating near-infrared spectroscopy measurements

Based on the model development thus far, the spatially distrib-
uted hemoglobin concentrations in the systemic and cerebral tis-
sue regions are known. The present task is now to simulate NIRS
measurements from these known hemoglobin concentration
changes in the scalp (i.e. systemic region) and brain (i.e. cerebral
region). Simulating NIRS will require three steps.

First the effective pathlength L, ; of the near-infrared light in
each region r and each wavelength / is estimated. For this step
we used a Monte Carlo simulation of photon migration in the tis-
sue, which is a numerical solution to radiative transport [43]. The
Monte Carlo method allows for spatially varying optical properties
and complex geometries. The resulting effective pathlength distri-
butions characterize the spatial sensitivity for each source-detector
pair to each tissue region. Details of how this Monte Carlo method
is used to obtain pathlengths L, ; are already published [44-46].

In the second step, the calculated pathlengths L, ; are used in a
first-order Rytov expansion [47] to model changes in optical den-
sity (AOD) that result from perturbations in the absorption coeffi-
cient Altqr;

AOD; = AptgsLs s + Aptgp Lo, (66)

where / is the wavelength of the NIRS measurement. Next the
absorption coefficient perturbations Ay, ; are related to perturba-
tions in the concentration of oxy- and deoxyhemoglobin
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Alg,, = AM, 1iy0€m50.. + AM; 1ibRErb 1 (67)

where eypo,; and eypg ; are the tabulated extinction coefficients [48].
Finally, the deviations in hemoglobin concentration are measured
from an initial value

AI\~/1r.h = Mr.h - Mr.h.m (68)

where M, is obtained from Eq. (65) and M, is calculated from
steady state, which completes the relationship between NIRS mea-
surements and the lumped model states of SimCVR.

3. Results

The SimCVR model dynamics are first illustrated in simulation
by showing how the model responds to step increases in ABP
and arterial blood CO,. Next we describe the procedure and results
of fitting the SimCVR model to NIRS experimental data from 10 hu-
man subjects. The complete SimCVR model is also compared to a
blood pressure regression, a second order transfer function model,
and simplified versions of SimCVR to assess the benefit of using the
complete model.

3.1. Simulated step increase in arterial blood pressure

We simulated a 10 mmHg increase in the blood pressure of the
systemic large artery. The increase was modeled as one-half period
of a raised cosine with a 1 s transition to the final value. The circu-
lation and gas exchange dynamics are shown in the capillary
chambers (Fig. 2).

The following narrative qualitative describes the step response
dynamics: The step increase in pressure in the systemic large ar-
tery P, propagates through the neck arteries to the cerebral circu-
lation where it causes an increase in cerebral arteriole pressure P} 4
and increased arteriole blood flow q,,. When gy, raises above the
blood flow set point g5, the autoregulation state x4, becomes
positive [Eq. (28)]. The autoregulation state acts to decrease cere-
bral arteriole compliance Cp,4 [EqQ. (30)] because positive values of
Xp.aur PUll Cp4 towards the lower bound [Eq. (29b)] of the sigmoid
where Cpq = Cpq0-Chw- The effects of decreasing C,, are that cere-
bral arteriole volume V, , goes down [Eq. (18)] and arteriole resis-
tance Ry, goes up [Eq. (2)]. The increased R,, counteracts the
higher P, and lowers the arteriole flow g5, [Eq. (3)] towards the
set point gy p. This return of cerebral blood flow during a step in-
crease in arterial pressure is the expected autoregulatory response.

3.2. Simulated step increase in arterial blood carbon dioxide

We also simulated the response to a 10 mmHg an increase in
the partial pressure of blood carbon dioxide. The increase was
again modeled as one-half period of a raised cosine but with a
30 s transition to the final value. The circulation and gas exchange
dynamics are again shown in the capillary chambers (Fig. 3).

Relative to the pressure step response, the CO, response
dynamics follow a somewhat more complicated sequence of
events that arise from competing factors in the system equations
as illustrated in the following narrative: The elevated arterial blood
CO, flows into the cerebral capillary chamber and diffuses into the
ISF [Eq. (60)]. The autoregulation blood flow set point s, in-
creases with increased CO, in the ISF P, o, isr [Eqs. (25) and (26)].
Meanwhile, the autoregulation gain K, decreases [Eq. (27)]. Since
the simulation started at steady state with all time derivatives
equal to zero, the increased ¢, results in a negative derivative
of the autoregulation state xpq, [EQ. (28)], which pulls its value
negative. The lower K, just makes this happen more gradually.
The autoregulation state acts on the cerebral arteriole compliance
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Fig. 2. SimCVR circulation and blood gas response to a simulated step 10 mmHg
increase in arterial blood pressure shown at the capillary level.

Cbq [EQ. (30)] such that negative values of x; 4, raise Cp, towards
the upper bound [Eq. (29a)] of the sigmoid where Cp 4= Cpq0 + Chw-
The effects of increasing C, 4 are that cerebral arteriole volume Vj, 4
goes up [Eq. (18)] and arteriole resistance R, , goes down [form of
Eq. (2)]. Increasing Vj,, drives up the intracranial volume Vj;. [Eq.
(37)] and increases intracranial pressure P, [form of Egs. (10)
and (11)]. Considering the arteriole flow g, [form of Eq. (3)],
decreasing P, will lower qp4 and decreasing Ry, will raise gp 4. In
our simulation, g, drops slightly for about 15 seconds before
increasing, resulting in an initial net outflow from the capillary.
Now examining the capillary pressure P,. [Eqs. (24) and (22)],
the initial negative derivative of capillary volume V,, would de-
crease P, ., except that it is dominated by the positive derivative
of intracranial pressure Pp ;. The increase in Py, drives up the cap-
illary blood flow ¢, until a new steady state is reached, which is
the expected cerebral blood flow outcome in a hypercapnic condi-
tion. The small increase in capillary O, is also expected due to the
interaction of CO, with oxyhemoglobin dissociation (see Blood oxy-
gen in Appendix), and because the increased CBF will decrease the
oxygen extraction fraction (OEF) since cerebral metabolic rate of
oxygen (CMRO,) is constant.

3.3. Fitting the model to near-infrared spectroscopy data

The model fitting approach was to drive the circulation and gas
exchange components of the SimCVR model with finger-cuff mea-
surements from human subjects and then to fit for the blood vol-
ume fractions that result in a best between simulated and actual
NIRS data.
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Fig. 3. SImCVR response to a simulated step 10 mmHg increase in blood carbon
dioxide shown at the capillary level.

Baseline optical data was collected from approximately 12
healthy subjects, including 11 males and 1 female. The subjects’
mean age was 35 years old, with a standard deviation of 12 years
as previously described [20]. The subjects were instructed to lie
quietly in a darkened room and to breathe freely during repeated
5-min runs. The raw optical measurements were collected with a
continuous wave DOT instrument, demodulated and down sam-
pled to 10 Hz. We concurrently monitored blood pressure varia-
tions with a custom-made finger cuff. The optical and blood
pressure measurements were band-pass-filtered in a forward then
reverse direction for zero phase distortion with a 4th order IIR But-
terworth filter [49] with a pass band of 0.05-1.5 Hz. The intensity
measurements were converted to a change in optical density for
the measurement wavelengths /. = 830 and 690 nm

AOD, 4ty =~ o8 (7). (69)
7.0

where I, ¢ is an initial value for the measurements, which we took as

the median intensity.

Given the large quantity of data (50 detectors x 2 wave-
lengths x 12 subjects x 3 runs x 5min), and the sensitivity of
time-series modeling to noise and motion artifacts, we pruned
the data set by the following procedure. Of the 12 subjects, 2 were
dropped from the analysis due to more frequent motion artifacts in
the blood pressure measurements as judged by visual inspection.
For the remaining subjects, runs and detectors, we computed the
power spectrum of the optical data and used the magnitude of
the cardiac power relative to the background signal as a quality
metric. We selected the runs with the highest cardiac power from
each of the remaining 10 subjects. Then for each of the runs we se-

lected the 10 detectors with the highest cardiac power. The result-
ing data subset contained 10 detectors, 2 wavelengths, and 10
subjects, each with 1 run of 5-min duration and a concurrent fin-
ger-cuff pressure recording.

The finger-cuff measurements were converted to inputs for the
SimCVR model in the form of systemic small artery pressure deriv-
ative % as in Eq. (12) by taking finite difference derivative of
the finger-cuff pressure. The finite difference derivative of the pres-
sure signal introduced negligible noise amplification because the
attenuation of the band-pass filter described above exceeds
120 dB at 4 Hz. The finger-cuff measurements obtained from the
human subjects were uncalibrated. Although this is a source of
uncertainty in the analysis that follows, the fitting of blood volume
fraction effectively compensates to a degree. The gain on the finger
cuff measurements was manually adjusted after data collection to
obtain physiologically plausible systolic and diastolic blood pres-
sure fluctuations spanning a range of 80-120 mmHg.

We estimated the blood volume fractions F,p, and vascular
compositions F.j separately for each detector by a constrained non-
linear optimization (FMINCON function in MATLAB®) that mini-
mized the objective function

Z(AOD21 ,model — AOD/Zl ,data)2
S2(AOD;, data)’
> (AOD,, modet — AOD;, data)’
>°(AOD, data)’ '

The objective function f of Eq. (70) is a joint minimization of the
sum-squared difference between the simulated and measured data
at the wavelengths /; =890 and 1, = 690 nm. The summations in
Eq. (70) are over time and the volume fractions F,, and F,; act
as regression coefficients that determine the linear combination
of time-varying blood oxygen S; o, ; and time-varying blood volume
V,; that best predict the measured optical density data. The optimi-
zation is constrained, however, because blood volume fractions
Frpy and vascular composition fractions F; can be bounded to
physiologically plausible ranges. We selected the FMINCON func-
tion because of it supports the use of constraints while minimizing
an objective function.

Constraints on the blood volume fractions in the scalp and brain
were guided by values from the literature. Normal blood volume
fractions are approximately 4% in the skin [50] and 5.2 + 1.4% in
the gray matter of the brain [51]. The arterial volume fraction in
the brain is approximately 30% [52], meaning that capillary plus
venous blood volume fraction is in the range of 70%. With these
values as a general guideline and recognizing that the actual blood
volume and composition may vary significantly depending on ex-
actly where the NIRS detectors are placed relative to vascular
structures, we choose the following bounds happens for the scalp
blood volume fraction

0.01 < Fqp, < 0.06, (71)

f=

(70)

and the brain blood volume fraction
0.02 < Fpp, < 0.12. (72)

The vascular composition bounds for the large arteries and large
veins (j = la, Iv) were

0.01 < F;; < 0.10, (73)
and in the smaller vessels
0.05 < F;; < 0.50. (74)

forr=s;j=sa,a,c,v,svandr=>b;j=pa,a,c, v pv. The vascular com-
position fractions were also subject to the constraint that they must
sum to 1 in the systemic and cerebral systems. By performing this
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fitting procedure separately on each detector, we accommodate lo-
cal anatomical variations in the tissue composition. The mean and
standard deviation of the fit values for the systemic blood volume
fraction F;, was 4% + 1% and for the cerebral blood volume fraction
Fp by it was 7% + 3%. The results for the vascular composition F;; are
summarized in Fig. 4. Future studies that include anatomical MRI
could set these values explicitly. All other parameters in the SimCVR
model were left constant across all subjects with the values re-
ported in Table 3.

3.4. Control conditions for comparison with model fitting

Our primary control condition for comparison with the SimCVR
model fit was to directly rescale the finger-cuff measurements to
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Fig. 4. Fit values for blood volume fraction (bvf) and the distribution of vascular
compartments. The error bars show the standard deviation across measurement
location after correcting for inter-subject variability.

Table 2
Glossary of terms.

oy Gas solubility, D) Gas diffusivity,
ml STPD ml~! mmHg ™! ml STPD s~! mmHg !
Hct Hematocrit, ml RBC/ml Srgj Saturation, percent
blood
ChbThicod  Blood HDT concentration, g/ Qg Gas consumption, ml STPD/s
ml
Whapr Molecular weight of HbT, g/  Musrpioa  Blood HbT concentration,
mol mM
T Blood temperature, C M hj Hemoglobin concentration,
mM
pH Blood pH EPY Blood volume fraction
R Gas constant, Frus Unstressed volume fraction
ml mmHg pmol~! K~!
Pstp Standard pressure, mmHg Frj Vascular chamber fraction
Tstp Standard temperature, K ey Autoregulation set point
fraction
P Hydrostatic pressure, Tats CO,, reactivity time constant,
mmHg S
Vi Fluid volume, ml Kaue Autoregulation gain
qrj Fluid flow, ml/s Cow1 Autoregulation upper bound,
ml/mmHg
G Compliance, ml/mmHg Cow2 Autoregulation lower bound,
ml/mmHg
Rj Resistance, mmHg ml~! s Xb.aut Autoregulation variable
Bri Windkessel factor oD Optical density
Prgj Gas pressure, mmHg L, Optical pathlength, mm
i Gas concentration, ml e Extinction coefficient,
STPD/ml mm~ ' mM~!

maximize the coefficient of determination R? with the NIRS data
(BP fit). A short time series of the SimCVR model fit and BP fit is
shown in Fig. 5 for the 830 and 690 nm NIRS measurements. The
high frequency oscillations that are apparent in the NIRS data are
the cardiac fluctuations; the lower frequency fluctuations are likely
related to respiration, vasomotion and other factors. In this short
time series, the R? values for the model fit are higher than for the
BP fit, which is the average trend that we observed and summarize
in Fig. 6. Our purpose in showing this short time series, however, is
to qualitatively illustrate that the R? improvement in the SimCVR
model fit reflects better agreement of the relative amplitude and
phase of the high and low frequency physiological fluctuations.
From this perspective, the SimCVR model is a nonlinear filter of
the finger-cuff measurements that results in improved correlations
with the baseline NIRS data. The results summary (Fig. 6) shows
that improved R? values were found in 9 out of 10 subjects for
the 830 and 690 nm NIRS measurements. The higher R? values ap-
pear consistently higher at 830 nm relative to 690 nm. This wave-
length dependence is potentially related to the dominance of HbO
absorption at 830 nm and HbR absorption at 690 nm.

Next we explored the possibility that the improved R? values
from the SimCVR fit relative to the BP fit were due to the time-
dynamics of the system that could be captured with a simple trans-
fer function (TF fit). Based on published methods for transfer func-
tion analysis on cerebral autoregulation [53], we chose to fit a 2nd
order continuous-time system transfer function G of the form

1+1,8

Gls)=Kp-— 2>
®) P1+2(Tys + 12527

(75)
where s is the Laplace variable, K}, is the static gain, 7, is the time
constant of the zero, t,, is the resonance time constant, and ( is
the damping factor. We fit the transfer function parameters in Eq.
(75) using prediction error minimization (PEM function in MAT-
LAB® System Identification Toolbox). The overall results of the TF
fit (Fig. 7) show significant improvement over the BP fit. For the
830 nm data, the SimCVR model fit is superior to the TF fit at the le-
vel of p< 0.0001, which suggests that the SimCVR captures tempo-
ral-dynamics beyond the complexity of the transfer function. For
the 690 nm data, however, the TF fit and SimCVR fit performed
equally well, suggesting that perhaps the transfer function suffi-
ciently captures HbR dynamics, which dominate the NIRS measure-
ments at this wavelength.

Two additional control conditions were used to explore the po-
tential for over-fitting with the SimCVR model. A third control con-
dition (Systemic only) forces all the time derivatives in the cerebral
region to zero, which effectively turns off the cerebral region so
that all the measurement dynamics are fit only with the systemic
(i.e. scalp) compartment. The forth condition turns off the systemic
region leaving the dynamics to be fit only by the cerebral compart-
ment (Cerebral only). The overall R? values from all four control
conditions (TF fit, BP fit, Systemic Only, Cerebral only) are com-
pared with SimCVR in Fig. 7. We found for 830 nm NIRS measure-
ments that the systemic only fit was better than the cerebral only.
The SimCVR model fit was better than any of the four control con-
ditions at 830 and better than all but the TF fit at 690 nm (multi-
factor ANOVA, p <0.0001), which supports our hypothesis that
the SimCVR model captures some salient features of the systemic
and cerebral physiology.

4. Discussion

We have presented an integrated systemic and cerebral circula-
tion and gas exchange model with a number of improvements to
prior published work. The improvements include explicit inclusion
of bound and unbound gases, nonlinear resistances, Windkessel
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Table 3
Parameter values.

Blood gas constants

oo, 3 x10° ChbT blood 0.150
co, 6.87 x 10 Whpr 66500
Circulation

Ps a0 90 Vs 0 500

Ps 500 40 Vssvio 1000
Ps a0 20 Vswo 1500
Psco 10 Vs.is 20000
P 40 7 Vsicr 40000
Ps,sv,O 6.4 qs0 70
Ps1vo 6.3 Bsa 3.0
PS,TG 0 ﬁS‘C 3‘0
Vslao 450 Bsv 3.0
Vs,sa,(] 250 Pb,pa,O 50
Vsa0 50 Ppao 30
Vsco 300 Ppco 20

Gas exchange

Ps0,40 100 Ps co,.00 43.49
Ps0,co 36.85 Ps o, 1570 44.49
Ps0,.00 36.85 Ps o, icr0 44.99
Ps 0, IsF.0 35.85 Q50,0 4.1667
Ps0, icF0 35.35 Q50,0 -3.3333
Ps 0,00 40.00 Pp0, 00 100.63
Ps.co,.c0 43.49 Ppo,co 38
Autoregulation

Taut 40 Chom, 1.435
Optical parameters for i; =890 nm and A, = 690 nm

Ls ), 24.3 Ls s, 23.1
EHBO,J4 0.232 EHbO.2, 0.0957

Hct 0.4 T 37
Mt biood 2.25 pH 7.4
Ppy0 17 Vb csko 150
Py pvo 16.4 Vhisk 250
Phjico 10 Vb.icr 500
Ppnyo 7 Vb protein 75
Vb,na0 15 Vi lipid 225
Vb.pao 20 Qbo 13.5
Vb.a0 10 Abfo 0.006
Vb,c,!) 30 ﬂb,t 3.0
Vb.u0 40 Pbv 3.0
Vb,pv,O 50 ,Bb,ic 5.0
Vbnvo 30 o 0.5
Vhico 1350 [0 0.5
Pb0, 00 38 Py co, csr.0 43.9
Pb0, csF.0 371 Pb co, 15F.0 44

Ph 0, 1sr.0 37 Pp co, icro 44.5
Pp0, icF0 35 Qb.0,0 0.7529
Ph.c0,.00 40.02 Qp.c0,0 -0.5549
Pbco,.co 43

Pbco, 00 43

G 0.495 Kauto 9.0
fiyss 55 Ly, 54
B 0179 Erk, 0.493

Measurement at 830nm Measurement at 690nm
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Fig. 5. Example of data fit results from subject 7, detector 5 for the finger-cuff
pressure (top row) and SimCVR model (bottom row) and for measurements at 830
(left column) and 690 nm measurements (right column). The R? values from the 5-
min runs are reported on the figure.

compliances, and a pressure input in the small systemic artery. We
have also used the steady-state relationships to calculate many of
the required parameters and included a complete description of
the state equations. The model was first illustrated in simulation
and then used to predict NIRS data. Statistical comparisons were
made between the SimCVR model predictions, blood pressure
regression and transfer function analysis.

Our principal findings are the following: (i) The SimCVR mod-
el simulation appears to reproduce the main characteristics of
cerebral autoregulation (Fig. 2), where the cerebral blood flow
returns to its baseline value on the order of seconds after a step

increase in systemic arterial blood pressure. The effects of this
regulatory physiology are also reflected through the coupling be-
tween the flow and gas exchange systems (Fig. 3). (ii) The R?
goodness-of-fit to NIRS data was better with the SimCVR model
than with blood pressure regression, transfer function analysis,
or reduced versions of the model. (iii) The time-series predic-
tions from the SimCVR model appear to more closely match
the relative amplitude and phase of the cardiac and respiratory
fluctuations in the NIRS data compared to blood pressure alone
(Fig. 5).

Although many issues remain to be addressed in this model
with regards to validation, un-modeled phenomena, and the po-
tential of over-fitting, this version of SimCVR is a significant
advancement towards physiological model-based interpretation
of neuroimaging data. In the following discussion, we comment
on the issues of validation, model limitations, and parameter fit-
ting. We conclude by mentioning some of the potential research
and clinical applications of this work.

4.1. Validation issues

The data that we used to compare model predictions with ob-
served human physiology includes a high degree of spatial averag-
ing due to the photon scattering in the NIRS biophysics. The
variations in the measurements arise from a mixture of scalp and
brain physiology and, from a modeling perspective, some unknown
weighting of the vascular chambers. Given these limitations, our
outcome measure is an aggregate outcome from all of these re-
gions rather than a validation of the relative attenuation and phase
of the vascular chambers separately. The bottom line is that addi-
tional data will be required to validate the model.

Although the current data comparison that we present falls
short of validation, the improvement in R? fits between the data
and the model with the whole model versus control conditions
(Fig. 7) is consistent with the hypothesis that the SimCVR model
captures some salient features of real human physiology.
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Fig. 6. Within-subject comparison of R? values for the full SimCVR model and
finger-cuff fits. We performed 2-way ANOVA on Fisher z transformed R? values to
test significance. Differences at the level p < 0.0001 are indicated by **. The p < 0.01
level is indicated by *. The error bars show standard deviations. (A) Comparisons for
830 nm data. (B) Comparisons for 690 nm data.

Another validation issue is with the pressure input to the small
arteries in the model [Eq. (12) through (15)]. Instead of acquiring a
Finapres monitor (Finapres Medical Systems, Amsterdam, Nether-
lands), we built our own custom finger-cuff pressure monitor.
The Finapres uses online servo control of the air pressure in the fin-
ger cuff and an assumed finger to aorta transfer function to esti-
mate arterial pressure. Our finger cuff uses manually pressurized
water, which was then fixed and included no transfer function
for preprocessing. Lacking the online servo pressure control in-
creases the level of uncertainly in our pressure readings and we
are, for now, tolerating this error source. Rather than use a separate
finger-aorta transfer function, we have used the SimCVR model
with a small artery pressure derivative input. While we hypothe-
size that using the systemic circulation model for this transforma-
tion is a sound approach, our large artery pressure estimates are
not validated at present. Although the large artery pressure esti-
mates are a source of uncertainty, the model analysis and results
rely predominately on the temporal dynamics of the finger-cuff
data and not on the absolute scale.

Future validation studies will ideally include measurement of
intracranial pressure and high-resolution anatomical scans that
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Fig. 7. Overall comparison of R? values for the full SimCVR model and control
conditions. We performed 3-way ANOVA on Fisher z transformed R? values to test
significance. Differences at the level p < 0.0001 are marked . The error bars show
the standard deviation across measurement location after correcting for inter-
subject variability.

segment the brain anatomy including vascular composition. It
would also be desirable to obtain measures of blood flow velocity
with transcranial Doppler (TCD) [54] and possibly also a flow-sen-
sitive MRI technique like arterial spin labeling (ASL) [55].

4.2. Limitations of the model

The challenge of building a mathematical model is to balance its
predictive capability and its simplicity to enable interpretation of
the physical system dynamics. There must also be a balance be-
tween the scope of questions posed and comprehensiveness of
the model. In this work we have chosen 48 states and 92 lumped
parameters that represent millions of physical elements and dy-
namic relationships. Although by modeling standards this is mod-
erately complex, the physical system is vastly more complex. The
complexity of SimCVR compared to other models allows for testing
of specific hypotheses about brain physiology. In addition, SimCVR
serves as a bridge between the simplified transfer function model
[53] and the millions of elements that comprise physiological
reality.

In the current version of this model there are still some entire
categories of physical phenomena that have been ignored such as
vasomotion [56], the anatomy of the cerebral vessels [57], and neu-
rovascular coupling [58]. This fact of missing features is apparent
even when the model predictions appear to be working very well.
For example in Fig. 5, there is a dip in the observed NIRS measure-
ment in the 3-4 second time range that is completely missed by
both the blood pressure and SimCVR predictions. It is possible that
this dip arose from local vasomotion rather than a systemic blood
pressure fluctuation that passed through the autoregulated cere-
bral circulation.

Perhaps the most significant limitation of the current SimCVR
model is the use of lumped parameters to simulate spatially dis-
tributed hemodynamics. This limitation would become particu-
larly apparent if applied to voxel-wise fMRI data. As a whole-
brain lumped model, SimCVR would only be useful for capturing
whole-brain signal dynamics in fMRI. Additional representation
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of the cerebral vascular structure would be required to describe re-
gional differences.

4.3. Parameter fitting

We limited our parameter fitting to the initial blood volume
fractions and vascular compositions for the systemic and cerebral
regions. The number of fit parameters totaled 8 for the systemic re-
gion and 6 for the cerebral region. The parameter values were also
bounded to physiologically plausible ranges; they also did not very
in time, and did not alter the dynamics of the flow or gas exchange
systems. The resulting fit values vary over a fairly wide range
(Fig. 4) but have, on average, sufficiently reasonable values for
the present crude level of validation.

The ratio of fit parameters to data points was 14:6000. We did
not, however, attempt to assess the actual degrees of freedom in
light of the temporal autocorrelation, correlation between blood
pressure and NIRS measurements and the nonlinear, bounded
parameter search. Instead we tested the possibility for the model
fit to have a lower R? value compared to four control conditions.
We also tried altering some steady-state parameter values non-
physiological values and re-fit the simulations to the data. The R?
values from SimCVR dropped significantly (results not shown).
Since there are infinite possible combinations of parameter values
for the dynamic system, we chose to illustrate the a similar de-
crease in the goodness-of-fit by shutting off first the cerebral loop
and then the systemic loop prior to fitting the blood volume frac-
tions and vascular compositions (Fig. 7). These findings help build
confidence that we are not over-fitting.

A limitation of the present parameter fitting approach in which
only the blood volume and vascular composition fractions are fit is
that there is unlikely to be any one-size-fits-all dynamic model for
all human physiology. Individual differences can be significant and
then there could also be changes during development, aging, dis-
ease and so forth. However, we were not confident in the present
study that available data would support unique parameter fits with
92 dynamic parameters plus the 14 we fit already. A move towards
fitting more of the parameters will require more data sources be-
yond the optical brain and finger-cuff pressures. Anatomical MRI,
for example, could help to fix the arterial and venous volume frac-
tions in the brain regions that are measured optically. Multimodal-
ity studies involving concurrent measurements with arterial spin
labeling (ASL) MRI and NIRS [59,60] would help to resolve uncer-
tainties in the blood flow and volume dynamics.

4.4. Potential research and clinical applications

The application of the present model to NIRS data is a signifi-
cant step forward in our longer-term aim of model-based neuroim-
aging analysis. Although further validation studies are required, we
can already begin to use this model to examine the contributions of

dSOZ MU+ 2a2POZ v? + 3a3péz v+ 4P(3)2 v

tions such as stroke, cerebrovascular disease, coma, and traumatic
brain injury (TBI). In the future, we aim to fit model parameters
such as vascular compliance as potential biomarkers of cerebrovas-
cular disease processes with the hope that the measured dynamics
provide sufficient sensitivity. Perhaps the most immediate applica-
tion, however, is to simulate ground truth for analysis algorithm
development in the functional neuroimaging field. This application
could be particularly useful for comparing time-series analysis
methods of the baseline physiology. The simulated ground truth
data, if combined with a multi-compartment Windkessel model
of the functional activation and spatially mapped, could also be
used to compare different tomography and functional analysis
methods.
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Appendix A
A.1. Blood oxygen

The Kelman equation for oxygemoglobin dissociation uses the
coefficients
a; = —8532.2289
a; =2121.4010
as = —67.073989
a, = 935960.87 (76)
as = —31346.258
as = 2396.1674
a; = —67.104406.

The calculation starts with a scale factor », which accounts for
changes in temperature, pH, and the partial pressure of CO,

V= ]O[0024(374)+0.40(pl—177,4)+0.06(1ogm(40)7logm(Pm2 )] . (77)

Next the following empirical relationship is used to compute
hemoglobin saturation

a1POZZ/+a2Pé2 v? -|—(13P?62 V3 +Péz v

S, = 100 (78)

a4 + asPo, v + agPy, V7 + azP} 13 + Py 4

We have further differentiated Kelman'’s equation with respect
to the partial pressure of oxygen as needed for the effective solubil-
ity do, in Eq. (45)

(a1Po2 v+ P, v? + asPy 1P + Py, v“) (as v+ 2agPo, v? + 3a,P5 v° + 4Py, 1/4)

dPo, a4 + asPo, v + agPy, v? + az P}, 13 + Py v

baseline physiology to both NIRS and, with some addition to the
forward model, fMRI as well. We can also now pursue pilot studies
in clinical data interpretation by applying restricted and selective
parameter fits to neuroimaging data from different patient popula-

2
(a4 +asPo, v + agPy V2 + a;Py v3 + Pp, 1/4>
(79)

A.2. Blood carbon dioxide

First and effective pH is calculated to account for differences in
temperature T



S.G. Diamond et al./ Mathematical Biosciences 220 (2009) 102-117 115

pK = 6.086 + 0.042(7.4 — pH) + (38 — T)
(0.00472 + 0.00139(7.4 — pH)). (80)

Now the concentration ratio of oxyhemoglobin-bound CO, to
plasma CO, is estimated as

Dox = 0.590 + 0.2913(7.4 — pH) — 0.0844(7.4 — pH)?, (81)

and the concentration ratio of deoxyhemoglobin-bound CO, to plas-
ma CO, is

Dr = 0.664 + 0.2275(7.4 — pH) — 0.0938(7.4 — pH)?. (82)

The unbound CO, concentration is computed with the Hender-
son-Hasselbalch equation

Cunbound.co, = (1 — Het) oo, Peo, (1 4 10°H7%), (83)

and the bound CO, concentration accounts for hemoglobin binding
with Dox and Dr

Hct S S
Cbaund{Oz = Cunbound,COZ m (DOX .186 +Dr (l - 1820>> . (84)

Finally, we will take the derivative with respect to the partial
pressure of CO,
dcco2
dPCOZ

= (1 — Het)oeo, (1 4 10°7775)

Hct Soz 502
<1+—1 “Het <D0xlOO+Dr<1 ~100 , (85)
which is the effective solubility of carbon dioxide in the blood oo,
in Eq. (47).

A.3. Parameter relationships at steady state

One of our objectives with this model was to obtain self-con-
sistency among the parameters and system equations at steady
state. Achieving this objective requires specifying a set of con-
straints on the parameters. The general approach to determining
these constraints is to set all the time derivatives in the state
equations equal to zero. The specific form of these constraint
equations requires a somewhat judicious choice of which param-
eters to set and which to calculate. Although our fixed parameter
set is not unique, it follows a sequence that we found to be logical
and that permits direct algebraic calculation of all but two param-
eter pairs, which must be estimated with nonlinear searches. By
also following simple rules on the monotonic variation in fluid
and gas pressure throughout the system, our approach will al-
ways yield positive quantities for the diffusion constants and
cerebral metabolic rates that are positive for O, and negative
for CO,.

The initial partial pressures of O, and CO, in the systemic cap-
illary are computed with a nonlinear search that minimizes the
objective function

f=(450(Cs0,00 = Cs5.0,c0) — Qs‘oz.o)2
+ (450(Cs.c0p.00 — Cs.coy.c0) — Qs.coz,o)27 (86)

where the gas concentrations are calculated from the oxyhemoglo-
bin dissociation, blood oxygen, and blood carbon dioxide functions de-
scribed in the Appendix. Since there is only one capillary chamber
for the systemic system

Ps,g.v = Ps.g,u (87)

with g=0,, CO,. The partial pressure of O, should monotonically
decrease from artery to capillary to ISF to ICF, whereas the partial
pressure of CO, should monotonically increase along the same cas-
cade. The diffusion constants can then be calculated as

Ds,L,g = Qs,g.O/(Ps.g,c‘O - Ps.g,ISF.O)v (88)
Ds,Mg = Qs,g,o/(Ps.g,ISF.O - Ps‘g.ICF‘O)- (89)

In the systemic fluid flow system, the initial blood pressures
should monotonically decrease through the system and all the ini-
tial compliance and resistances are calculated from the initial val-
ues of pressure, volume and flow

CS.j.O = VsJ.O(l - Fs,us)/st,O7 (90)
Rsjo = (Psjo — Psko)/qso, (91)

where F ;s is unstressed volume fraction, j = la, sa, sv, lv and k = sq, a,
lv, ra. For the Windkessel compliance compartments, j = a,c,7, and
k = c,v, sv, the term F;,; is neglected.

In the cerebral fluid flow system, the initial blood pressures
again decrease monotonically through the system with intracranial
ic pressure also greater than the neck vein nv pressure. The initial
compliances and resistances are, in the neck arteries and veins

Cb.na‘O = Vb.na.O(‘l - Fb‘us)/Ps‘Ia.m (92)
Ronao = (Psiao — Popao)/(Gp0 + dbs0): (93)
Cb.m}.O = Vb,ny.O(‘1 - Fb.us)/Pb.m/.Oa (94)
Rynv0 = (Ponvo — Ps120)/(@bo + dbfo)- (95)
For j = pa, pv and k = a, nv we have

Cojo = Vbjo(1 = Fpus)/(Pojo — Phico), (96)
Ryjo = (Pbjo — Pb0)/(Gs0 + dbso)s (97)

and for the Windkessel compartments, j = a, ¢, vand k = c, v, pv, the
unstressed volume fraction Fj, ;5 is neglected. The initial intracranial
volume is

Viico = Vbpao + Vbao + Voco + Voo + Voo + Vicsro
+ Viisro + Vbicro + Vb.tissueo (98)

with the compliance

Chico = Vbico/Pyiico- (99)
The resistances for the CSF flow are

Rof.0 = (Poao — Phico)/dbs o (100)

Ryp,.0 = (Ppico = Po.nvo)/dbso- (101)

For the cerebral gas exchange, there is again only one capillary
chamber therefore with g = 0,, CO,,

Pbg,v = Pb.g,c- (102)

The partial pressure of O, should monotonically decrease from
artery to capillary to CSF to ISF to ICF, whereas the partial pressure
of CO, should monotonically increase along the same cascade. The
initial partial pressures of O, and CO, in the cerebral artery are
found with a nonlinear search that minimizes the objective
function

f=1(Cs0,00(Gp0 + qbs0) — Cb.0,.009b0 — O‘Ozpbvoz.a‘o%f,o)z

+ (Cs.c0,00(qp0 + bs0) — Cb.coya0dp0 — OCCOZPb,COZ‘a.OQb,f.O)Z,
(103)

where the gas concentrations are calculated from the Oxyhemoglo-
bin dissociation, Blood oxygen and Blood carbon dioxide functions de-
scribed in the Appendix. The metabolic rates that balance the

system at steady state are
Qbg0 = Csgao(qbo + Apro) — Cogcodpo — %ePogcsrodbso (104)

and the diffusion constants are
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Dyrg = qp0(Coga0 — Cogco)/(Pogco — Pogisro)s (105)
Dymg = Qbgo/(Ppgisro — Pogicro), (106)
Dpng = o‘gqbf,o(Pb,g.u‘O —Pygcsro)/(Pogcsro — Pogisro)- (107)

Finally, the autoregulation state variable x; 4, sShould be initial-
ized at zero.
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